Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 518: 184-191, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29455102

RESUMO

NiS/g-C3N4/SrTiO3 (NS/CN/STO) composites were prepared using a facile hydrothermal method. The synergistic effect of g-C3N4/SrTiO3 (CN/STO) heterojunction and NiS cocatalyst enhanced the photocatalytic hydrogen evolution activity of NS/CN/STO. A hydrogen production rate of 1722.7 µmol h-1 g-1 was obtained when the 2%NiS/20%g-C3N4/SrTiO3 (2NS/20CN/STO) was used for the photocatalytic hydrogen evolution in the presence of methanol used as a sacrificial agent under UV-vis light irradiation; the photocatalytic hydrogen production rate of 2NS/20CN/STO is 32.8, 8.9 and 4.2 times the value of that obtained with pure g-C3N4, SrTiO3 and 20%g-C3N4/SrTiO3 (20CN/STO), respectively. Moreover, in photoelectrochemical investigations when compared with 20CN/STO, SrTiO3 and g-C3N4, 2NS/20CN/STO exhibited significant photocurrent enhancement. The heterojunction and cocatalyst in NS/CN/STO improved the charge separation efficiency and the lifetime of the charge carriers, leading to the enhanced generation of electrons for photocatalytic hydrogen production.

2.
Chemistry ; 16(29): 8757-61, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20572173

RESUMO

Hierarchical ZnO hollow spheres (400-500 nm in diameter) consisting of ZnO nanoparticles with a diameter of approximately 15 nm have been successfully prepared by a facile and rapid sonochemical process. The formation of hierarchical ZnO hollow spheres is attributed to the oriented attachment and subsequent Ostwald ripening process according to time-dependent experiments. The as-prepared ZnO hollow spheres are used as a photoanode in dye-sensitized solar cells and exhibit a highly efficient power conversion efficiency of 4.33%, with a short-circuit current density of 9.56 mA cm(-2), an open-circuit voltage of 730 mV, and a fill factor of 0.62 under AM 1.5 G one sun (100 mW cm(-2)) illumination. Moreover, the photovoltaic performance (4.33%) using the hierarchical ZnO hollow spheres is 38.8% better than that of a ZnO nanoparticle photoelectrode (3.12%), which is mainly attributed to the efficient light scattering for the former.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Energia Solar , Óxido de Zinco/química , Óxido de Zinco/síntese química , Corantes/química , Microscopia Eletrônica de Varredura , Fotoquímica
4.
J Phys Chem B ; 109(48): 22758-66, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16853965

RESUMO

One-dimensional molybdenum oxide nanostructures with layered mesostructures were prepared directly from commercial bulk MoO3 crystals by a surfactant-templated hydrothermal process. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectra, and thermal analyses have been used to characterize the obtained molybdenum oxide nanomaterials. By use of cetyltrimethylammonium bromide as the structure-directing template, novel molybdenum oxide nanofibers with triple interlayer distances of 2.84, 2.66, and 2.46 nm have been obtained. The nanofibers have diameters of 20-100 nm and length up to 20 microm. The growth of multilamellar molybdenum oxide nanofibers can be interpreted by the combination of surfactant/inorganic self-assembly process and host/guest intercalation chemistry. On the basis of the X-ray diffraction and infrared results, a possible arrangement of surfactant in the interlayer space of molybdenum oxide by bilayer micelles with different tilt angles has been proposed. In addition, the thermal stability of surfactant has been improved by intercalation. Moreover, molybdenum oxide nanobelts with two kinds of interlayered structures were also produced in the presence of n-alkylamines (n = 12, 14, 16, and 18) following a similar method, these nanobelts show length up to more than 10 microm, width ranging between 200 and 600 microm, and width-to-thickness ratios of about 3-12. A linear relationship is observed between the interlayer distance and the number of carbon atoms in n-alkyl chains.

5.
J Am Chem Soc ; 125(51): 16025-34, 2003 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-14677994

RESUMO

A simple hydrothermal method has been developed for the systematic synthesis of lanthanide orthophosphate crystals with different crystalline phases and morphologies. It has been shown that pure LnPO(4) compounds change structure with decreasing Ln ionic radius: i.e., the orthophosphates from Ho to Lu as well as Y exist only in the tetragonal zircon (xenotime) structure, while the orthophosphates from La to Dy exist in the hexagonal structure under hydrothermal treatment. The obtained hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) products have a wirelike morphology. In contrast, tetragonal LnPO(4) (Ln = Ho, Er, Tm, Yb, Lu, Y) samples prepared under the same experimental conditions consist of nanoparticles. The obtained hexagonal LnPO(4) (Ln = La --> Tb) can convert to the monoclinic monazite structured products, and their morphologies remained the same after calcination at 900 degrees C in air (Hexagonal DyPO(4) is an exceptional case, it transformed to tetragonal DyPO(4) by calcination), while the tetragonal structure for (Ho--> Lu, Y)PO(4) remains unchanged by calcination. The resulting LnPO(4) (Ln = La --> Dy) products consist almost entirely of nanowires/nanorods with diameters of 5-120 nm and lengths ranging from several hundreds of nanometers to several micrometers. Europium doped LaPO(4) nanowires were also prepared, and their photoluminescent properties were reported. The optical absorption spectrum of CePO(4) nanowires was measured and showed some differences from that of bulk CePO(4) materials. The possible growth mechanism of lanthanide phosphate nanowires was explored in detail. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, electron diffraction, infrared absorption spectra, X-ray photoelectron spectroscopy, optical absorption spectra, and photoluminescence spectra have been employed to characterize these materials.

6.
J Am Chem Soc ; 125(6): 1494-5, 2003 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-12568606

RESUMO

Here we report the first synthesis of Dy(OH)(3) nanotubes by facile hydrothermal treatment of bulky Dy(2)O(3) crystals. Dy(OH)(3) nanotubes were calcined to produce Dy(2)O(3) nanotubes. Ho(OH)(3) and Ho(2)O(3) nanotubes were also obtained by the same method. The growth of nanotubes occurred through a dissolution-recrystallization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...