Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581763

RESUMO

Probiotic-based therapies have shown great potential in the prevention and treatment of many diseases by positively regulating intestinal flora homeostasis. However, the efficacy of oral probiotics is severely limited due to the loss of bioactivity, short intestinal retention time, and insufficient therapeutic effect. Here, based on droplet microfluidics, we developed a hydrogel microsphere with colonic targeting and mucoadhesive capabilities as a multifunctional delivery platform, which can be used for co-delivery of probiotics (Escherichia coli Nissle 1917, EcN) and auxiliary molecules (indole-3-propionic acid, IPA), achieving synergistic therapeutic effects. In vivo studies shown that the integrated multifunctional microspheres can significantly reduce intestinal inflammation, repair intestinal barrier function, enhance probiotic colonization in the intestine, and modulate disordered intestinal flora, demonstrating enhanced therapeutic effects in a mouse model of colitis. This work reveals that microfluidic-based smart droplet microspheres can provide a versatile platform for advanced microbial therapies.


Assuntos
Microesferas , Probióticos , Probióticos/administração & dosagem , Animais , Administração Oral , Camundongos , Escherichia coli , Colite/terapia , Microfluídica/métodos , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Indóis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
2.
Adv Sci (Weinh) ; 11(11): e2308442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225706

RESUMO

Construction of biomimetic models for structural color evolution not only gives new photonic phenomena but also provide cues for biological morphogenesis. Here, a novel confined self-assembly method is proposed for the generation of hydroxypropyl cellulose (HPC)-based cholesteric liquid crystals (CLCs) microbubbles. The assembly process relies on the combination of droplet microfluidics, solvent extraction, and a volume confined environment. The as-prepared HPC structural color microbubbles have a transparent shell, an orderly arranged cholesteric liquid crystal (CLC) middle layer, and an innermost bubble core. The size of the microbubble, shell thickness, and the color of the CLC layer can be adjusted by altering the microfluidic parameters. Intriguingly, benefited from the compartmentalization effect provided by droplet microfluidics, microbubbles with multiple cores of different color combinations are generated under precise control. The self-assembled CLCs microbubbles have bright structural color, suspending ability, and good temperature-sensitive characteristics, making them ideal underwater sensors. The present confined assembly approach will shed light on creating novel photonic structures and the HPC microbubble will find widespread applications in multifunctional sensing, optical display, and other related fields are believed.

3.
Biomed Pharmacother ; 155: 113792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271569

RESUMO

BACKGROUND AND PURPOSE: Xin-Ji-Er-Kang (XJEK) is traditional Chinese formula presented excellent protective effects on several heart diseases, but the potential components and targets are still unclear. The aim of this study is to elucidate the effective components of XJEK and reveal its potential mechanism of cardioprotective effect in myocardial ischemia-reperfusion (MIR) injury. EXPERIMENTAL APPROACH: Firstly, the key compounds in XJEK, plasma and heart tissue were analyzed by high resolution mass spectrometry. Bioinformatics studies were also involved to disclose the potential targets and the binding sites for the key compounds. Secondly, to study the protective effect of XJEK on MIR injury and related mechanism, mice subjected to MIR surgery and gavage administered with XJEK for 6 weeks. Cardiac function parameters and apoptosis level of cardiac tissue were assessed. The potential mechanism was further verified by knock down of target protein in vitro. RESULTS: Pharmacokinetics studies showed that Sophora flavescens alkaloids, primarily composed with matrine, are the key component of XJEK. And, through bioinformatic analysis, we speculated JAK2 could be the potential target for XJEK, and could form stable hydrogen bonds with matrine. Administration of XJEK and matrine significantly improved heart function and reduced apoptosis of cardiomyocytes by increasing the phosphorylation of JAK2 and STAT3. The anti-apoptosis effect of XJEK and matrine was also observed on AC16 cells, and could be reversed by co-treatment with JAK2 inhibitor AG490 or knock-down of JAK2. CONCLUSION: XJEK exerts cardioprotective effect on MIR injury, which may be associated with the activation of JAK2/STAT3 signaling pathway.


Assuntos
Alcaloides , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Biologia Computacional , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...