Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(28): 33102-33111, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235920

RESUMO

The carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites (denoted as C/LMFP@LLTO) have been successfully obtained according to a common hydrothermal synthesis following a post-calcination treatment. The morphology and particle size of LiMn0.5Fe0.5PO4 (denoted as LMFP) are not changed by the coating. All electrode materials exhibit nanorod morphology; they are 100-200 nm in length and 50-100 nm in width. The Li0.33La0.56TiO3 (denoted as LLTO) coating can facilitate the charge transfer to enhance lithiation/delithiation kinetics, leading to an excellent rate performance and cycle stability of an as-obtained C/LMFP@LLTO electrode material. The reversible discharge capacities of C/LMFP@LLTO (3 wt %) at 0.05 and 5 C are 146 and 131.3 mA h g-1, respectively. After 100 cycles, C/LMFP@LLTO (3 wt %) exhibits an outstanding capacity of 106.4 mA h g-1 with an 81% capacity retention rate at 5 C, indicating an excellent reversible capacity and good cycle capacity. Therefore, it can be considered that LLTO coating is a prospective pathway to exploit the electrochemical performances of C/LMFP.

2.
Chem Commun (Camb) ; 51(74): 14050-3, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26247777

RESUMO

Novel submicron Li5Cr7Ti6O25, which exhibits excellent rate capability, high cycling stability and fast charge-discharge performance is constructed using a facile sol-gel method. The insights obtained from this study will benefit the design of new negative electrode materials for lithium-ion batteries.

3.
ACS Appl Mater Interfaces ; 6(22): 20205-13, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25330170

RESUMO

Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...