Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
EJNMMI Res ; 14(1): 37, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581480

RESUMO

BACKGROUND: A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS: Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS: Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.

3.
J Nucl Med ; 65(4): 573-579, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423782

RESUMO

Our primary aim was to compare the therapeutic index (tumor-to-bone marrow and tumor-to-kidney absorbed-dose ratios) of the new radiolabeled somatostatin receptor antagonist [177Lu]Lu-DOTA-JR11 with the established radiolabeled somatostatin receptor agonist [177Lu]Lu-DOTATOC in the same patients with progressive, standard therapy-refractory meningioma. Methods: In this prospective, single-center, open-label phase 0 study (NCT04997317), 6 consecutive patients were included: 3 men and 3 women (mean age, 63.5 y). Patients received 6.9-7.3 GBq (standard injected radioactivity) of [177Lu]Lu-DOTATOC followed by 3.3-4.9 GBq (2 GBq/m2 × body surface area) of [177Lu]Lu-DOTA-JR11 at an interval of 10 ± 1 wk. In total, 1 [177Lu]Lu-DOTATOC and 2-3 [177Lu]Lu-DOTA-JR11 treatment cycles were performed. Quantitative SPECT/CT was done at approximately 24, 48, and 168 h after injection of both radiopharmaceuticals to calculate meningioma and organ absorbed doses as well as tumor-to-organ absorbed-dose ratios (3-dimensional segmentation approach for meningioma, kidneys, liver, bone marrow, and spleen). Results: The median of the meningioma absorbed dose of 1 treatment cycle was 3.4 Gy (range, 0.8-10.2 Gy) for [177Lu]Lu-DOTATOC and 11.5 Gy (range, 4.7-22.7 Gy) for [177Lu]Lu-DOTA-JR11. The median bone marrow and kidney absorbed doses after 1 treatment cycle were 0.11 Gy (range, 0.05-0.17 Gy) and 2.7 Gy (range, 1.3-5.3 Gy) for [177Lu]Lu-DOTATOC and 0.29 Gy (range, 0.16-0.39 Gy) and 3.3 Gy (range, 1.6-5.9 Gy) for [177Lu]Lu-DOTA-JR11, resulting in a 1.4 (range, 0.9-1.9) times higher median tumor-to-bone marrow absorbed-dose ratio and a 2.9 (range, 2.0-4.8) times higher median tumor-to-kidney absorbed-dose ratio with [177Lu]Lu-DOTA-JR11. According to the Common Terminology Criteria for Adverse Events version 5.0, 2 patients developed reversible grade 2 lymphopenia after 1 cycle of [177Lu]Lu-DOTATOC. Afterward, 2 patients developed reversible grade 3 lymphopenia and 1 patient developed reversible grade 3 lymphopenia and neutropenia after 2-3 cycles of [177Lu]Lu-DOTA-JR11. No grade 4 or 5 adverse events were observed at 15 mo or more after the start of therapy. The disease control rate was 83% (95% CI, 53%-100%) at 12 mo or more after inclusion. Conclusion: Treatment with 1 cycle of [177Lu]Lu-DOTA-JR11 showed 2.2-5.7 times higher meningioma absorbed doses and a favorable therapeutic index compared with [177Lu]Lu-DOTATOC after injection of 1.4-2.1 times lower activities. The first efficacy results demonstrated a high disease control rate with an acceptable safety profile in the standard therapy for refractory meningioma patients. Therefore, larger studies with [177Lu]Lu-DOTA-JR11 are warranted in meningioma patients.


Assuntos
Linfopenia , Neoplasias Meníngeas , Meningioma , Tumores Neuroendócrinos , Compostos Organometálicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida/efeitos adversos , Compostos Organometálicos/efeitos adversos , Estudos Prospectivos , Radioisótopos/uso terapêutico , Receptores de Somatostatina
4.
Eur J Nucl Med Mol Imaging ; 51(4): 1185-1193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038755

RESUMO

PURPOSE: To assess early tumor response with quantitated SPECT/CT and to correlate it with clinical outcome in metastatic castration-resistant prostate cancer (mCRPC) patients treated with 177Lutetium-PSMA I&T therapy. METHODS: Single-center, observational study, part of the prospective Swiss national cancer registry study investigating the safety and efficacy of [177Lu]Lu-PSMA I&T (EKNZ: 2021-01271) in mCRPC patients treated with at least two cycles of [177Lu]Lu-PSMA I&T 6-weekly. After the first and second cycle quantitated SPECT/CT (Symbia Intevo, Siemens) was acquired 48 h after injection (three fields of view from head to thigh, 5 s/frame) and reconstructed using xQuant® (48i, 1 s, 10-mm Gauss). Image analysis: The PSMA-positive total tumor volumes (TTV) were semi-automatically delineated using a SUV threshold of 3 with MIMencore® (version 7.1.3, Medical Image Merge Software Inc.). Changes in TTV, highest tumor SUVmax, and total tumor SUVmean between cycles 1 and 2 were calculated and grouped into a) stable or decrease and b) increase. Serum PSA levels were assessed at each therapy cycle and at follow-up until progression or death. Changes in TTV, PSA, SUVmax, and SUVmean were correlated with PSA-progression-free survival (PSA-PFS) and the overall survival (OS) using the Kaplan-Meier methodology (log-rank test). RESULTS: Between 07/2020 and 04/2022, 111 patients were screened and 73 finally included in the data analysis. The median follow-up was 8.9 months (range 1.4-26.6 months). Stable or decreased TTV at cycle 2 was associated with longer OS (hazard ratio (HR) 0.28, 95% confidence interval (CI) 0.09-0.86, p < 0.01). Similar, stable, or decreased PSA was associated with longer OS (HR 0.21; CI 0.07-0.62, p < 0.01) and PSA-PFS (HR 0.34; 95% CI 0.16-0.72, p < 0.01). Combining TTV and PSA will result in an augmented prognostic value for OS (HR 0.09; CI 0.01-0.63; p < 0.01) and for PSA-PFS (HR 0.11; CI 0.02-0.68; p < 0.01). A reduction of SUVmax or SUVmean was not prognostically relevant, neither for OS (p 0.88 and 0.7) nor for PSA-PFS (p 0.73 and 0.62, respectively). CONCLUSION: Six weeks after initiating [177Lu]Lu-PSMA I&T, TTV and serum PSA appear to be good prognosticators for OS. Combined together, TTV + PSA change demonstrates augmented prognostic value and can better predict PSA-PFS. Larger studies using TTV change prospectively as an early-response biomarker are warranted for implementing management change towards a more personalized clinical practice.


Assuntos
Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração , Ureia/análogos & derivados , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Suíça , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Lutécio/uso terapêutico , Dipeptídeos/uso terapêutico , Estudos Retrospectivos
6.
J Transl Med ; 21(1): 604, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679770

RESUMO

BACKGROUND: Neuroblastoma (NB) and pheochromocytoma/paraganglioma (PHEO/PGL) are neuroendocrine tumors. Imaging of these neoplasms is performed by scintigraphy after injection of radiolabeled meta-iodobenzylguanidine (mIBG), a norepinephrine analog taken up by tumoral cells through monoamine transporters. The pharmacological induction of these transporters is a promising approach to improve the imaging and therapy (theranostics) of these tumors. METHODS: Transporters involved in mIBG internalization were identified by using transfected Human Embryonic Kidney (HEK) cells. Histone deacetylase inhibitors (HDACi) and inhibitors of the PI3K/AKT/mTOR pathway were tested in cell lines to study their effect on mIBG internalization. Studies in xenografted mice were performed to assess the effect of the most promising HDACi on 123I-mIBG uptake. RESULTS: Transfected HEK cells demonstrated that the norepinephrine and dopamine transporter (NET and DAT) avidly internalizes mIBG. Sodium-4-phenylbutyrate (an HDACi), CUDC-907 (a dual HDACi and PI3K inhibitor), BGT226 (a PI3K inhibitor) and VS-5584 and rapamycin (two inhibitors of mTOR) increased mIBG internalization in a neuroblastoma cell line (IGR-NB8) by 2.9-, 2.1-, 2.5-, 1.5- and 1.3-fold, respectively, compared with untreated cells. CUDC-907 also increased mIBG internalization in two other NB cell lines and in one PHEO cell line. We demonstrated that mIBG internalization occurs primarily through the NET. In xenografted mice with IGR-NB8 cells, oral treatment with 5 mg/kg of CUDC-907 increased the tumor uptake of 123I-mIBG by 2.3- and 1.9-fold at 4 and 24 h post-injection, respectively, compared to the untreated group. CONCLUSIONS: Upregulation of the NET by CUDC-907 lead to a better internalization of mIBG in vitro and in vivo.


Assuntos
Neuroblastoma , Tumores Neuroendócrinos , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , 3-Iodobenzilguanidina/farmacologia , 3-Iodobenzilguanidina/uso terapêutico , Fosfatidilinositol 3-Quinases , Medicina de Precisão , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/tratamento farmacológico
8.
J Med Chem ; 66(13): 8484-8497, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37328158

RESUMO

The peptide fragment of human serum albumin that was identified as an inhibitor of C-X-C motif chemokine receptor 4 (CXCR4), termed EPI-X4, was investigated as a scaffold for the development of CXCR4-targeting radio-theragnostics. Derivatives of its truncated version JM#21 (ILRWSRKLPCVS) were conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and tested in Jurkat and Ghost-CXCR4 cells. Ligand-1, -2, -5, -6, -7, -8, and -9 were selected for radiolabeling. Molecular modeling indicated that 177Lu-DOTA incorporation C-terminally did not interfere with the CXCR4 binding. Lipophilicity, in vitro plasma stability, and cellular uptake hinted 177Lu-7 as superior. In Jurkat xenografts, all radioligands showed >90% washout from the body within an hour, with the exception of 177Lu-7 and 177Lu-9. 177Lu-7 demonstrated best CXCR4-tumor targeting. Ex vivo biodistribution and single-photon emission computed tomography (SPECT)/positron emission tomography (PET)/CT imaging of 177Lu-7/68Ga-7 showed the same distribution profile for both radioligands, characterized by very low uptake in all nontargeted organs except the kidneys. The data support the feasibility of CXCR4-targeting with EPI-X4-based radioligands and designate ligand-7 as a lead candidate for further optimization.


Assuntos
Tomografia por Emissão de Pósitrons , Radioisótopos , Humanos , Radioisótopos/química , Distribuição Tecidual , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Linhagem Celular Tumoral , Receptores CXCR4/metabolismo
9.
Eur J Nucl Med Mol Imaging ; 50(10): 3050-3061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37261473

RESUMO

PURPOSE: Fibroblast activation protein-α (FAP)-targeting radioligands have recently demonstrated high diagnostic potential. However, their therapeutic value is impaired by the short tumor residence time. Several strategies have been tested to overcome this limitation, but a head-to-head comparison has never been done. With the aim to identify strengths and limitations of the suggested strategies, we compared the monomer FAPI-46 versus (a) its dimer (FAPI-46-F1D), (b) two albumin binders conjugates (FAPI-46-Ibu (ibuprofen) and FAPI-46-EB (Evans Blue)), and (c) cyclic peptide FAP-2286. METHODS: 177Lu-labeled ligands were evaluated in vitro in cell lines with low (HT-1080.hFAP) and high (HEK-293.hFAP) humanFAP expression. SPECT/CT imaging and biodistribution studies were conducted in HT-1080.hFAP and HEK-293.hFAP xenografts. The areas under the curve (AUC) of the tumor uptake and tumor-to-critical-organs ratios and the absorbed doses were estimated. RESULTS: Radioligands showed IC50 in the picomolar range. Striking differences were observed in vivo regarding tumor uptake, residence, specificity, and total body distribution. All [177Lu]Lu-FAPI-46-based radioligands showed similar uptake between the two tumor models. [177Lu]Lu-FAP-2286 showed higher uptake in HEK-293.hFAP and the least background. The AUC of the tumor uptake and absorbed dose was higher for [177Lu]Lu-FAPI-46-F1D and the two albumin binder conjugates, [177Lu]Lu-FAPI-46-Ibu and [177Lu]Lu-FAPI-46-EB, in HT1080.hFAP xenografts and for [177Lu]Lu-FAPI-46-EB and [177Lu]Lu-FAP-2286 in HEK293.hFAP xenografts. The tumor-to-critical-organs AUC values and the absorbed doses were in favor of [177Lu]Lu-FAP-2286, but tumor-to-kidneys. CONCLUSION: The study indicated dimerization and cyclic peptide structures as promising strategies for prolonging tumor residence time, sparing healthy tissues. Albumin binding strategy outcome depended on the albumin binding moiety. The peptide showed advantages in terms of tumor-to-background ratios, besides tumor-to-kidneys, but its tumor uptake was FAP expression-dependent.


Assuntos
Albuminas , Peptídeos , Humanos , Células HEK293 , Distribuição Tecidual , Linhagem Celular Tumoral , Albuminas/química , Peptídeos Cíclicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio
10.
Pharmaceutics ; 15(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986746

RESUMO

Broad availability and cost-effectiveness of 99Mo/99mTc generators worldwide support the use, and thus the development, of novel 99mTc-labelled radiopharmaceuticals. In recent years, preclinical and clinical developments for neuroendocrine neoplasms patient management focused on somatostatin receptor subtype 2 (SST2) antagonists, mainly due to their superiority in SST2-tumour targeting and improved diagnostic sensitivity over agonists. The goal of this work was to provide a reliable method for facile preparation of a 99mTc-labelled SST2 antagonist, [99mTc]Tc-TECANT-1, in a hospital radiopharmacy setting, suitable for a multi-centre clinical trial. To ensure successful and reproducible on-site preparation of the radiopharmaceutical for human use shortly before administration, a freeze-dried three-vial kit was developed. The final composition of the kit was established based on the radiolabelling results obtained during the optimisation process, in which variables such as precursor content, pH and buffer, as well as kit formulations, were tested. Finally, the prepared GMP-grade batches met all predefined specification parameters together with long-term kit stability and stability of the product [99mTc]Tc-TECANT-1. Furthermore, the selected precursor content complies with micro-dosing, based on an extended single-dose toxicity study, where histopathology NOEL was established at 0.5 mg/kg BW, being more than 1000 times higher than the planned human dose of 20 µg. In conclusion, [99mTc]Tc-TECANT-1 is suitable to be advanced into a first-in-human clinical trial.

11.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267479

RESUMO

Somatostatin receptors (SSTs) are recognized as favorable molecular targets in neuroendocrine tumors (NETs) and neuroendocrine neoplasms (NENs), with subtype 2 (SST2) being the predominantly and most frequently expressed. PET/CT imaging with 68Ga-labeled SST agonists, e.g., 68Ga-DOTA-TOC (SomaKit TOC®) or 68Ga-DOTA-TATE (NETSPOT®), plays an important role in staging and restaging these tumors and can identify patients who qualify and would potentially benefit from peptide receptor radionuclide therapy (PRRT) with the therapeutic counterparts 177Lu-DOTA-TOC or 177Lu-DOTA-TATE (Lutathera®). This is an important feature of SST targeting, as it allows a personalized treatment approach (theranostic approach). Today, new developments hold promise for enhancing diagnostic accuracy and therapeutic efficacy. Among them, the use of SST2 antagonists, such as JR11 and LM3, has shown certain advantages in improving image sensitivity and tumor radiation dose, and there is evidence that they may find application in other oncological indications beyond NETs and NENs. In addition, PRRT performed with more cytotoxic α-emitters, such as 225Ac, or ß- and Auger electrons, such as 161Tb, presents higher efficacy. It remains to be seen if any of these new developments will overpower the established radiolabeled SST analogs and PRRT with ß--emitters.

12.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959665

RESUMO

Treatment of neuroendocrine tumours with the radiolabelled somatostatin receptor subtype 2 (SST2) peptide agonist [177Lu]Lu-DOTA-TATE is effective and well-established. Recent studies suggest improved therapeutic efficacy using the SST2 peptide antagonist [177Lu]Lu-OPS201. However, little is known about the cellular mechanisms that lead to the observed differences. In the present in vitro study, we compared kinetic binding, saturation binding, competition binding, cellular uptake and release of [177Lu]Lu-OPS201 versus [177Lu]Lu-DOTA-TATE using HEK cells stably transfected with the human SST2. While [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE exhibited comparable affinity (KD, 0.15 ± 0.003 and 0.08 ± 0.02 nM, respectively), [177Lu]Lu-OPS201 recognized four times more binding sites than [177Lu]Lu-DOTA-TATE. Competition assays demonstrated that a high concentration of the agonist displaced only 30% of [177Lu]Lu-OPS201 bound to HEK-SST2 cell membranes; an indication that the antagonist binds to additional sites that are not recognized by the agonist. [177Lu]Lu-OPS201 showed faster association and slower dissociation than [177Lu]Lu-DOTA-TATE. Whereas most of [177Lu]Lu-OPS201 remained at the cell surface, [177Lu]Lu-DOTA-TATE was almost completely internalised inside the cell. The present data identified distinct differences between [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE regarding the recognition of receptor binding sites (higher for [177Lu]Lu-OPS201) and their kinetics (faster association and slower dissociation of [177Lu]Lu-OPS201) that explain, to a great extent, the improved therapeutic efficacy of [177Lu]Lu-OPS201 compared to [177Lu]Lu-DOTA-TATE.

13.
Chimia (Aarau) ; 75(6): 500-504, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233812

RESUMO

Radiolabeled peptides can deliver radiation selectively to tumors via targeting peptide receptors that are overexpressed on the surface of cancer cells. The radiation is used either for detection (imaging) or for destruction (therapy) of these tumors. The Division of Radiopharmaceutical Chemistry at the University Hospital Basel has conducted pioneering work on the development of peptide-based radiopharmaceuticals. Our research covers the entire spectrum of such developments, from bench-to-bedside, and it is illustrated in this article by selective cases.


Assuntos
Neoplasias , Peptídeos , Humanos , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos
14.
J Nucl Med ; 62(Suppl 2): 44S-50S, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230073

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) is an emerging target due to its high expression in benign insulinomas as well as in islet cell hypertrophia/hyperplasia (nesidioblastosis) and pancreatic ß-cells. In 2008, occult insulinomas were localized for the first time in men using the metabolically stable radiolabeled glucagon-like peptide-1 (GLP-1) agonist [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 (111In-DTPA-exendin-4). Afterward, several radiopharmaceuticals for GLP-1R PET/CT imaging were synthesized and evaluated, for example, [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]-exendin-4 (68Ga-DOTA-exendin-4), [Cys40(MAL-NOTA-68Ga)NH2]-exendin-4 (68Ga-NOTA-exendin-4), and [Lys40(NODAGA-68Ga)NH2]-exendin-4 (68Ga-NODAGA-exendin-4). Several prospective comparison studies provided evidence that GLP-1R PET/CT is significantly more sensitive than contrast-enhanced MRI (ceMRI), contrast-enhanced CT (ceCT), GLP-1R SPECT/CT, somatostatin receptor PET/CT, and SPECT/CT in the detection of benign insulinomas, and insulinomas in the context of multiple endocrine neoplasia type 1. As a result, the European Neuroendocrine Tumor Society guidelines recommend GLP-1R imaging or selective intraarterial calcium stimulation and venous sampling (ASVS) in patients for whom there is a clinical suspicion of having an insulinoma but who have a negative ceMRI/ceCT or negative endoscopic ultrasound. Furthermore, there is growing evidence that GLP-1R PET/CT can visualize and localize adult nesidioblastosis. This is clinically relevant as the distinction between focal and diffuse nesidioblastosis is critical in directing a therapeutic strategy in these patients. Prospective studies have proven the clinical relevance of GLP-1R imaging as it is often the only imaging modality able to localize the insulinoma or nesidioblastosis. It is therefore likely that this noninvasive imaging modality will replace the invasive localization of insulinomas using ASVS. More experimental indications for GLP-1R imaging include the diagnosis of an insulinoma/nesidioblastosis in patients with postprandial hypoglycemia after bariatric bypass surgery and monitoring ß-cells in patients with brittle type 1 diabetes after islet-cell transplantation. We believe that these indications and possibly future indications will bring GLP-1R imaging to the clinic.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Acetatos , Animais , Compostos Heterocíclicos com 1 Anel , Insulinoma
15.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800582

RESUMO

[99mTc]Tc-HYNIC-TOC is the most widely used 99mTc-labeled somatostatin receptor (SST) agonist for the SPECT imaging of SST-expressing tumors, such as neuroendocrine tumors. Recently, radiolabeled SST antagonists have shown improved diagnostic efficacy over agonists. 99mTc-labeled SST antagonists are lacking in clinical practice. Surprisingly, when [99mTc]Tc-HYNIC was conjugated to the SST2 antagonist SS01, SST2 imaging was not feasible. This was not the case when [99mTc]Tc-N4 was conjugated to SS01. Here, we assessed the introduction of different spacers (X: ß-Ala, Ahx, Aun and PEG4) among HYNIC and SS01 with the aim of restoring the affinity of HYNIC conjugates. In addition, we used the alternative antagonist JR11 for determining the suitability of HYNIC with 99mTc-labeled SST2 antagonists. We performed a head-to-head comparison of the N4 conjugates of SS01 and JR11. [99mTc]Tc-HYNIC-TOC was used as a reference, and HEK-SST2 cells were used for in vitro and in vivo evaluation. EDDA was used as a co-ligand for all [99mTc]Tc-HYNIC conjugates. The introduction of Ahx restored, to a great extent, the SST2-mediated cellular uptake of the [99mTc]Tc-HYNIC-X conjugates (X: spacer), albeit lower than the corresponding [99mTc]Tc-N4-conjugates. SPECT/CT images showed that all 99mTc-labeled conjugates accumulated in the tumor and kidneys with [99mTc]Tc-HYNIC-PEG4-SS01, [99mTc]Tc-N4-SS01 and [99mTc]Tc-N4-JR11 having notably higher kidney uptake. Biodistribution studies showed similar or better tumor-to-non-tumor ratios for the [99mTc]Tc-HYNIC-Ahx conjugates, compared to the [99mTc]Tc-N4 counterparts. The [99mTc]Tc-HYNIC-Ahx conjugates of SS01 and JR11 were comparable to [99mTc]Tc-HYNIC-TOC as imaging agents. HYNIC is a suitable chelator for the development of 99mTc-labeled SST2 antagonists when a spacer of appropriate length, such as Ahx, is used.

16.
Eur J Cancer ; 146: 56-73, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588146

RESUMO

Nuclear medicine plays an increasingly important role in the management neuroendocrine neoplasms (NEN). Somatostatin analogue (SSA)-based positron emission tomography/computed tomography (PET/CT) and peptide receptor radionuclide therapy (PRRT) have been used in clinical trials and approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). European Association of Nuclear Medicine (EANM) Focus 3 performed a multidisciplinary Delphi process to deliver a balanced perspective on molecular imaging and radionuclide therapy in well-differentiated neuroendocrine tumours (NETs). NETs form in cells that interact with the nervous system or in glands that produce hormones. These cells, called neuroendocrine cells, can be found throughout the body, but NETs are most often found in the abdomen, especially in the gastrointestinal tract. These tumours may also be found in the lungs, pancreas and adrenal glands. In addition to being rare, NETs are also complex and may be difficult to diagnose. Most NETs are non-functioning; however, a minority present with symptoms related to hypersecretion of bioactive compounds. NETs often do not cause symptoms early in the disease process. When diagnosed, substantial number of patients are already found to have metastatic disease. Several societies' guidelines address Neuroendocrine neoplasms (NENs) management; however, many issues are still debated, due to both the difficulty in acquiring strong clinical evidence in a rare and heterogeneous disease and the different availability of diagnostic and therapeutic options across countries. EANM Focus 3 reached consensus on employing 68gallium-labelled somatostatin analogue ([68Ga]Ga-DOTA-SSA)-based PET/CT with diagnostic CT or magnetic resonance imaging (MRI) for unknown primary NET detection, metastatic NET, NET staging/restaging, suspected extra-adrenal pheochromocytoma/paraganglioma and suspected paraganglioma. Consensus was reached on employing 18fluorine-fluoro-2-deoxyglucose ([18F]FDG) PET/CT in neuroendocrine carcinoma, G3 NET and in G1-2 NET with mismatched lesions (CT-positive/[68Ga]Ga-DOTA-SSA-negative). Peptide receptor radionuclide therapy (PRRT) was recommended for second line treatment for gastrointestinal NET with [68Ga]Ga-DOTA-SSA uptake in all lesions, in G1/G2 NET at disease progression, and in a subset of G3 NET provided all lesions are positive at [18F]FDG and [68Ga]Ga-DOTA-SSA. PRRT rechallenge may be used for in patients with stable disease for at least 1 year after therapy completion. An international consensus is not only a prelude to a more standardised management across countries but also serves as a guide for the direction to follow when designing new research studies.


Assuntos
Imagem Molecular/métodos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/terapia , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Consenso , Humanos , Tumores Neuroendócrinos/patologia , Compostos Radiofarmacêuticos/metabolismo
17.
Rev Endocr Metab Disord ; 22(3): 581-594, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495250

RESUMO

Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of tumors, mainly localized in the gastrointestinal system. What characterizes NENs is the expression of hormone receptors on the tumor cell surface, making them accessible for diagnostic and therapeutic approaches (theranostics) using radiolabelled peptides. Somatostatin receptors subtype-two (SST2) play an important role in NENs since they are overexpressed and homogeneously distributed at the surface of the majority of NENs. Accordingly, targeting SST2 for diagnostic and therapeutic purposes has been established. Current research aims at upregulating its expression by epigenetic treatment or improving its targeting via use of alternative radioligands. In addition, recent data suggest a future role of SST antagonists as a diagnostic tool and a potential therapeutic option. Another promising target is the glucagon-like peptide-1 (GLP-1) receptor. Targeting GLP-1R using exendin-4 (GLP-1 analogue) has a high sensitivity for the localization of the often SST2-negative sporadic insulinomas and insulinomas in the context of multiple endocrine neoplasia type-1. Further options for patients with insufficient expression of SST2 involve metaiodobenzylguanidine (MIBG) and the molecular target C-X-C motif chemokine receptor-4 (CXCR4), which have been evaluated for potential theranostic approach in symptomatic NENs or dedifferentiated tumors. Recently, new targets such as the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the fibroblast activation protein (FAP) have been identified in NENs. Finally, minigastrin - a ligand targeting the cholecystokinin-2 (CCK2) receptors in medullary thyroid carcinoma and foregut neuroendocrine tumors - may improve future management of these diseases with currently limited therapeutic options. This review summarises the current approaches and future challenges of diagnostic and therapeutic evaluations in neuroendocrine neoplasms.


Assuntos
Insulinoma , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Medicina de Precisão , Receptores de Somatostatina
18.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379299

RESUMO

Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project "TECANT" two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist.

19.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932783

RESUMO

Targeted radionuclide therapy of somatostatin receptor (SST)-expressing tumors is only partially addressed by the established somatostatin analogs having an affinity for the SST subtype 2 (SST2). Aiming to target a broader spectrum of tumors, we evaluated the bis-iodo-substituted somatostatin analog ST8950 ((4-amino-3-iodo)-d-Phe-c[Cys-(3-iodo)-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2), having subnanomolar affinity for SST2 and SST5, labeled with [177Lu]Lu3+ via the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Human Embryonic Kidney (HEK) cells stably transfected with the human SST2 (HEK-SST2) and SST5 (HEK-SST5) were used for in vitro and in vivo evaluation on a dual SST2- and SST5-expressing xenografted mouse model. natLu-DOTA-ST8950 showed nanomolar affinity for both subtypes (IC50 (95% confidence interval): 0.37 (0.22-0.65) nM for SST2 and 3.4 (2.3-5.2) for SST5). The biodistribution of [177Lu]Lu-DOTA-ST8950 was influenced by the injected mass, with 100 pmol demonstrating lower background activity than 10 pmol. [177Lu]Lu-DOTA-ST8950 reached its maximal uptake on SST2- and SST5-tumors at 1 h p.i. (14.17 ± 1.78 and 1.78 ± 0.35%IA/g, respectively), remaining unchanged 4 h p.i., with a mean residence time of 8.6 and 0.79 h, respectively. Overall, [177Lu]Lu-DOTA-ST8950 targets SST2-, SST5-expressing tumors in vivo to a lower extent, and has an effective dose similar to clinically used radiolabeled somatostatin analogs. Its main drawbacks are the low uptake in SST5-tumors and the persistent kidney uptake.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Lutécio/química , Radioisótopos/química , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Animais , Células HEK293 , Humanos , Concentração Inibidora 50 , Rim/metabolismo , Camundongos , Transplante de Neoplasias , Octreotida/análogos & derivados , Peptídeos/química , Ligação Proteica , Radiometria , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
20.
EJNMMI Res ; 10(1): 90, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32757150

RESUMO

BACKGROUND: Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor. The analog ST8950 ((4-amino-3-iodo)-D-Phe-c[Cys-(3-iodo)-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2), bearing 2 iodo-amino acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical evaluation of DOTA-ST8950 labeled with 68Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5). RESULTS: Compared with natGa-DOTA-NOC, natGa-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (IC50 (95%CI), nM = 0.32 (0.20-0.50) and 1.9 (1.1-3.1) vs 0.70 (0.50-0.96) and 3.4 (1.8-6.2), respectively), while natGa-DOTA-ST8951 lost affinity for both subtypes. natGa-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation as natGa-DOTA-TATE and slightly better than natGa-DOTA-NOC (EC50, nM = 0.46 (0.23-0.92) vs 0.47 (0.15-1.5) vs 0.59 (0.18-1.9), respectively). [67Ga]Ga-DOTA-ST8950 had a similar internalization rate as [67Ga]Ga-DOTA-NOC in SST2-expressing cells (12.4 ± 1.6% vs 16.6 ± 2.2%, at 4 h, p = 0.0586). In vivo, [68Ga]Ga-DOTA-ST8950 showed high and specific accumulation in SST2- and SST5-expressing tumors, comparable with [68Ga]Ga-DOTA-NOC (26 ± 8 vs 30 ± 8 %IA/g, p = 0.4630 for SST2 and 15 ± 6 vs 12 ± 5 %IA/g, p = 0.3282, for SST5, 1 h p.i.) and accumulation in the SST-positive tissues, the kidneys and the liver. PET/CT images of [68Ga]Ga-DOTA-ST8950, performed in a dual HEK-SST2 and HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast. CONCLUSIONS: [68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...