Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 830009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433669

RESUMO

Obesity has become a public health problem in recent decades, and during pregnancy, it can lead to an increased risk of gestational complications and permanent changes in the offspring resulting from a process known as metabolic programming. The offspring of obese dams are at increased risk of developing non-alcoholic fatty liver disease (NAFLD), even in the absence of high-fat diet consumption. NAFLD is a chronic fatty liver disease that can progress to extremely severe conditions that require surgical intervention with the removal of the injured tissue. Liver regeneration is necessary to preserve organ function. A range of pathways is activated in the liver regeneration process, including the Hippo, TGFß, and AMPK signaling pathways that are under epigenetic control. We investigated whether microRNA modulation in the liver of the offspring of obese dams would impact gene expression of Hippo, TGFß, and AMPK pathways and tissue regeneration after partial hepatectomy (PHx). Female Swiss mice fed a standard chow or a high-fat diet (HFD) before and during pregnancy and lactation were mated with male control mice. The offspring from control (CT-O) and obese (HF-O) dams weaned to standard chow diet until day 56 were submitted to PHx surgery. Prior to the surgery, HF-O presented alterations in miR-122, miR-370, and Let-7a expression in the liver compared to CT-O, as previously shown, as well as in its target genes involved in liver regeneration. However, after the PHx (4 h or 48 h post-surgery), differences in gene expression between CT-O and HF-O were suppressed, as well as in microRNA expression in the liver. Furthermore, both CT-O and HF-O presented a similar regenerative capacity of the liver within 48 h after PHx. Our results suggest that survival and regenerative mechanisms induced by the partial hepatectomy may overcome the epigenetic changes in the liver of offspring programmed by maternal obesity.

2.
J Muscle Res Cell Motil ; 43(1): 35-44, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084659

RESUMO

Acute metabolic and molecular response to exercise may vary according to exercise's intensity and duration. However, there is a lack regarding specific tissue alterations after acute exercise with aerobic or anaerobic predominance. The present study investigated the effects of acute exercise performed at different intensities, but with equal total load on molecular and physiological responses in swimming rats. Sixty male rats were divided into a control group and five groups performing an acute bout of swimming exercise at different intensities (80, 90, 100, 110 and 120% of anaerobic threshold [AnT]). The exercise duration of each group was balanced so all groups performed at the same total load. Gene expression (HIF-1α, PGC-1α, MCT1 and MCT4 mRNA), blood biomarkers and tissue glycogen depletion were analyzed after the exercise session. ANOVA One-Way was used to indicate statistical mean differences considering 5% significance level. Blood lactate concentration was the only biomarker sensitive to acute exercise, with a significant increase in rats exercised above AnT intensities (p < 0.000). Glycogen stores of gluteus muscle were significantly reduced in all exercised animals in comparison to control group (p = 0.02). Hepatic tissue presented significant reduction in glycogen in animals exercised above AnT (p = 0.000, as well as reduced HIF-1α mRNA and increased MCT1 mRNA, especially at the highest intensity (p = 0.002). Physiological parameters did not alter amongst groups for most tissues. Our results indicate the hepatic tissue alterations (glycogen stores and gene expressions) in response to different exercise intensities of exercise, even with the total load matched.


Assuntos
Condicionamento Físico Animal , Natação , Limiar Anaeróbio , Animais , Glicogênio/metabolismo , Masculino , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Ratos , Natação/fisiologia
3.
J Neurosci Res ; 99(12): 3325-3338, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34651324

RESUMO

Iron restriction during pregnancy can lead to iron deficiency and changes in the dopaminergic system in the adulthood of offspring, and restless legs syndrome (RLS) is closely related to these changes. Objectives: Analyze whether iron restriction during pregnancy would cause changes in the behavior, sleep, and dopaminergic system of the male offspring. In addition, we aimed to assess whether exercise would be able to modulate these variables. The pregnant rats (Wistar) were divided into four groups with different concentrations of iron in the diet: standard (St), supplementation (Su), restriction since weaning (R1), and restriction only during pregnancy (R2). After birth, the offspring were assigned to their respective groups according to the dams diet (St, Su, R1, and R2) and distributed into sedentary (SD) and exercised (EX) (for 8 weeks of training), reaching eight groups of offspring (O): OSt SD, OSt EX, OSu SD, OSu EX, OR1 SD, OR1 EX, OR2 SD, and OR2 EX. Sleep, behavior, and analysis of key genes of dopaminergic system (D2, DAT) were performed after 8 weeks. The results for trained offspring that the mother received supplementation diet were the most expressive, with increased freezing and the OR1 SD group showed an increase in DAT protein content. These changes may have been due to the association between the dams diet during pregnancy and the practice of exercise by the offspring. The different concentrations of iron during pregnancy caused changes in the offspring, however, they were not associated with fetal programming in the context of RLS.


Assuntos
Deficiências de Ferro , Síndrome das Pernas Inquietas , Animais , Feminino , Ferro , Masculino , Gravidez , Ratos , Ratos Wistar , Sono
4.
Sci Rep ; 11(1): 8980, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903707

RESUMO

Nutritional status during gestation may lead to a phenomenon known as metabolic programming, which can be triggered by epigenetic mechanisms. The Let-7 family of microRNAs were one of the first to be discovered, and are closely related to metabolic processes. Bioinformatic analysis revealed that Prkaa2, the gene that encodes AMPK α2, is a predicted target of Let-7. Here we aimed to investigate whether Let-7 has a role in AMPKα2 levels in the NAFLD development in the offspring programmed by maternal obesity. Let-7 levels were upregulated in the liver of newborn mice from obese dams, while the levels of Prkaa2 were downregulated. Let-7 levels strongly correlated with serum glucose, insulin and NEFA, and in vitro treatment of AML12 with glucose and NEFA lead to higher Let-7 expression. Transfection of Let-7a mimic lead to downregulation of AMPKα2 levels, while the transfection with Let-7a inhibitor impaired both NEFA-mediated reduction of Prkaa2 levels and the fat accumulation driven by NEFA. The transfection of Let-7a inhibitor in ex-vivo liver slices from the offspring of obese dams restored phospho-AMPKα2 levels. In summary, Let-7a appears to regulate hepatic AMPKα2 protein levels and lead to the early hepatic metabolic disturbances in the offspring of obese dams.


Assuntos
Proteínas Quinases Ativadas por AMP/biossíntese , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/biossíntese , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Fígado/patologia , Camundongos , Gravidez
5.
Appl Physiol Nutr Metab ; 46(10): 1196-1206, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33779293

RESUMO

We investigated the effects of acute and chronic exercise, prescribed in different intensity zones, but with total load-matched on mitochondrial markers (cytochrome C oxidase subunit IV (COX-IV), mitochondrial transcription factor A (Tfam), and citrate synthase (CS) activity in skeletal muscles, heart, and liver), glycogen stores, aerobic capacity, and anaerobic index in swimming rats. For this, 2 experimental designs were performed (acute and chronic efforts). Load-matched exercises were prescribed below, above, and on the anaerobic threshold (AnT), determined by the lactate minimum test. In chronic programs, 2 training prescription strategies were assessed (monotonous and linear periodized model). Results show changes in glycogen stores but no modification in the COX-IV and Tfam contents after acute exercises. In the chronic protocols, COX-IV and Tfam proteins and CS adaptations were intensity- and tissue-dependent. Monotonous training promoted better adaptations than the periodized model. Training at 80% of the AnT improved both performance variables, emphasizing the anaerobic index, concomitant to CS and COX-IV improvement (soleus muscle). The aerobic capacity and CS activity (gastrocnemius) were increased after 120% AnT training. In conclusion, acute exercise protocol did not promote responses in mitochondrial target proteins. An intensity and tissue dependence were reported in the chronic protocols, highlighting training at 80 and 120% of the AnT. Novelty: Load-matched acute exercise did not enhance COX-IV and Tfam contents in skeletal muscles, heart, and liver. In chronic exercise, COX-IV, Tfam, and CS activity adaptations were intensity- and tissue-dependent. Monotonous training was more efficient than the periodized linear model in adaptations of target proteins and enzymatic activity.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas , Condicionamento Físico Animal , Adaptação Fisiológica , Limiar Anaeróbio , Animais , Citrato (si)-Sintase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glicogênio/metabolismo , Ácido Láctico/sangue , Masculino , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
6.
J Neuroendocrinol ; 32(10): e12900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33040385

RESUMO

High-fat diet (HFD) feeding is deleterious to hypothalamic tissue, leading to inflammation and lipotoxicity, as well as contributing to central insulin resistance. Autophagy is a process that restores cellular homeostasis by degrading malfunctioning organelles and proteins. Chronic HFD-feeding down-regulates hypothalamic autophagy. However, the effects of short-term HFD-feeding and the saturated fatty acid palmitate (PA) on hypothalamic autophagy and in neurones that express neuropeptide Y (NPY) and agouti-related peptide remains unknown. Therefore, we assessed hypothalamic autophagy after 1 and 3 days of HFD-feeding. We also injected PA i.c.v and analysed the modulation of autophagy in hypothalamic tissue. Both interventions resulted in changes in autophagy-related gene profiles without significant differences in protein content of p62 and LC3B-II, markers of the autophagy pathway. When we assessed native NPY neurones in brain slices from PA-treated animals, we observed increased levels of Atg7 and LC3B protein in response to PA treatment, indicating the induction of autophagy. We then tested the direct effects of fatty acids using the immortalised hypothalamic NPY-expressing neuronal cell model mHypoE-46. We found that PA, but not palmitoleate (PO) (a monounsaturated fatty acid), was able to induce autophagy. Co-treatment with PA and PO was able to block the PA-mediated induction of autophagy, as assessed by flow cytometry. When the de novo ceramide synthesis pathway was blocked with myriocin pre-treatment, we observed a decrease in PA-mediated induction of autophagy, although there was no change with the toll-like receptor 4 inhibitor, TAK-242. Taken together, these findings provide evidence that saturated and unsaturated fatty acids can differentially regulate hypothalamic autophagy and that ceramide synthesis may be an important mediator of those effects. Understanding the mechanisms by which dietary fats affect autophagy in neurones involved in the control of energy homeostasis will provide potential new pathways for targeting and containing the obesity epidemic.


Assuntos
Autofagia/efeitos dos fármacos , Ácidos Graxos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Autofagia/genética , Células Cultivadas , Dieta Hiperlipídica , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido Palmítico/farmacologia , Fatores de Tempo
7.
PLoS One ; 15(9): e0239876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997706

RESUMO

This study investigated the effect of non-periodized training performed at 80, 100 and 120% of the anaerobic threshold intensity (AnT) and a linear periodized training model adapted for swimming rats on the gene expression of monocarboxylate transporters 1 and 4 (MCT1 and 4, in soleus and gastrocnemius muscles), protein contents, blood biomarkers, tissue glycogen, body mass, and aerobic and anaerobic capacities. Sixty Wistar rats were randomly divided into 6 groups (n = 10 per group): a baseline (BL; euthanized before training period), a control group (GC; not exercised during the training period), three groups exercised at intensities equivalent to 80, 100 and 120% of the AnT (G80, G100 and G120, respectively) at the equal workload and a linear periodized training group (GPE). Each training program lasted 12 weeks subdivided into three periods: basic mesocycle (6 weeks), specific mesocycle (5 weeks) and taper (1 week). Although G80, G100 and G120 groups were submitted to monotony workload (i.e. non-modulation at intensity or volume throughout the training program), rodents were evaluated during the same experimental timepoints as GPE to be able comparisons. Our main results showed that all training programs were capable to minimize the aerobic capacity decrease promoted by age, which were compared to control group. Rats trained in periodization model had reduced levels of lipid blood biomarkers and increased hepatic glycogen stores compared to all other trained groups. At the molecular level, only expressions of MCT1 in the muscle were modified by different training regimens, with MCT1 mRNA increasing in rats trained at lower intensities (G80), and MCT1 protein content showed higher values in non-periodized groups compared to pre-training and GPE. Here, training at different intensities but at same total workload promoted similar adaptations in rats. Nevertheless, our results suggested that periodized training seems to be optimize the physiological responses of rats.


Assuntos
Adaptação Fisiológica , Limiar Anaeróbio , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Natação/fisiologia , Simportadores/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores/sangue , Peso Corporal , Glicogênio/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Simportadores/genética , Regulação para Cima
8.
J Endocrinol ; 244(1): 71-82, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557728

RESUMO

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Glucose/metabolismo , Isoformas de Proteínas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas/farmacologia , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Nutr Metab (Lond) ; 14: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239403

RESUMO

BACKGROUND: Nutritional status in early life is critically involved in the metabolic phenotype of offspring. However the changes triggered by maternal consumption of high-fat diet (HFD) in pre- or postnatal period should be better understood. Here we evaluated whether maternal HFD consumption during gestation and lactation could differently affect liver miR-122 and miR-370 expression leading to metabolic damages observed in offspring. Moreover, we investigate whether early overnutrition program offspring to more harmful response to HFD in later life. METHODS: Female mice were fed either a standard chow (SC) diet or a HFD three weeks before and during mating, gestation and/or lactation. Offspring were evaluated on the delivery day (d0), in a cross-fostering model at day 28 (d28) and in adult life, after a re-challenge with a HFD (d82). RESULTS: In vitro analysis using liver cell line showed that palmitate could induced decrease in miR-122 and increase in miR-370 expression. Newborn pups (d0) from obese dams showed a decrease in lipid oxidation markers (Cpt1a and Acadvl), an increase in triacylglycerol synthesis markers (Agpat and Gpam), as well as lower miR-122 and higher miR-370 hepatic content that was inversely correlated to maternal serum NEFA and TAG. Pups fostered to SC dams presented an increase in body weight and Agpat/Gpam expression at d28 compared to pups fostered to HFD dams and an inverse correlation was observed between miR-122 hepatic expression and offspring serum TAG. In adult life (d82), the reintroduction of HFD resulted in higher body weight gain and hepatic lipid content. These effects were accompanied by impairment in lipid and glucose metabolism, demonstrated by reduced Cpt1a/Acadvl and increased Agpat/Gpam expression, lower glucose tolerance and insulin sensitivity. CONCLUSION: Our data suggest that both gestational and lactation overnutrition results in metabolic changes that can permanently alter lipid homeostasis in offspring. The presence of fatty acids in maternal blood and milk seem to be responsible for modulating the expression of miR-122 and miR-370, which are involved in liver metabolism. These alterations significantly increase susceptibility to obesity and ectopic lipid accumulation and lead to a more harmful response to HFD in offspring.

10.
Appl Physiol Nutr Metab ; 42(1): 46-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28006434

RESUMO

The intensity of lactate minimum (LM) has presented a good estimate of the intensity of maximal lactate steady-state (MLSS); however, this relationship has not yet been verified in the mouse model. We proposed validating the LM protocol for swimming mice by investigating the relationship among intensities of LM and MLSS as well as differences between sexes, in terms of aerobic capacity. Nineteen mice (male: 10, female: 9) were submitted to the evaluation protocols for LM and MLSS. The LM protocol consisted of hyperlactatemia induction (30 s exercise (13% body mass (bm)), 30 s resting pause and exhaustive exercise (13% bm), 9 min resting pause and incremental test). The LM underestimated MLSS (mice: 17.6%; male: 13.5%; female: 21.6%). Pearson's analysis showed a strong correlation among intensities of MLSS and LM (male (r = 0.67, p = 0.033); female (r = 0.86, p = 0.003)), but without agreement between protocols. The Bland-Altman analysis showed that bias was higher for females (1.5 (0.98) % bm; mean (MLSS and LM): 4.4%-6.4% bm) as compared with males (0.84 (1.24) % bm; mean (MLSS and LM): 4.5%-7.5% bm). The error associated with the estimated of intensity for males was lower when compared with the range of means for MLSS and LM. Therefore, the LM test could be used to determine individual aerobic intensity for males (considering the bias) but not females. Furthermore, the females supported higher intensities than the males. The differences in body mass between sexes could not explain the higher intensities supported by the females.


Assuntos
Teste de Esforço/veterinária , Fadiga/veterinária , Hiperlactatemia/veterinária , Ácido Láctico/sangue , Modelos Biológicos , Esforço Físico , Natação , Limiar Anaeróbio , Animais , Peso Corporal , Tolerância ao Exercício , Fadiga/sangue , Fadiga/etiologia , Fadiga/metabolismo , Feminino , Hiperlactatemia/sangue , Hiperlactatemia/etiologia , Hiperlactatemia/metabolismo , Ciência dos Animais de Laboratório/métodos , Masculino , Camundongos , Reprodutibilidade dos Testes , Caracteres Sexuais , Suporte de Carga
11.
PLoS One ; 11(8): e0160184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479001

RESUMO

Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metabolism. However, it is important to assess whether maternal consumption of a HFD during critical periods of development can lead to metabolic changes in the offspring metabolism. This study evaluated the potential effects of metabolic programming on the impairment of insulin signalling in recently weaned offspring from obese dams. Additionally, we investigated if early exposure to an obesogenic environment could exacerbate the impairment of glucose metabolism in adult life in response to a HFD. Swiss female mice were fed with Standard Chow (SC) or a HFD during gestation and lactation and tissues from male offspring were analysed at d28 and d82. Offspring from obese dams had greater weight gain and higher adiposity and food intake than offspring from control dams. Furthermore, they showed impairment in insulin signalling in central and peripheral tissues, which was associated with the activation of inflammatory pathways. Adipose tissue was ultimately the most affected in adult offspring after HFD rechallenge; this may have contributed to the metabolic deregulation observed. Overall, our results suggest that diet-induced maternal obesity leads to increased susceptibility to obesity and impairment of insulin signalling in offspring in early and late life that cannot be reversed by SC consumption, but can be aggravated by HFD re-exposure.


Assuntos
Dieta Hiperlipídica , Insulina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Adiposidade , Animais , Glicemia/análise , Peso Corporal , Feminino , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Hipotálamo/metabolismo , Insulina/sangue , Leptina/sangue , Fígado/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal
12.
J Nutr Biochem ; 34: 30-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180121

RESUMO

Nutritional excess during pregnancy and lactation has a negative impact on offspring phenotype. In adulthood, obesity and lipid overload represent factors that compromise autophagy, a process of lysosomal degradation. Despite knowledge of the impact of obesity on autophagy, changes in offspring of obese dams have yet to be investigated. In this study, we tested the hypothesis that maternal obesity induced by a high fat diet (HFD) modulates autophagy proteins in the hypothalamus and liver of the offspring of mice. At birth (d0), offspring of obese dams (HFD-O) showed an increase in p62 protein and a decrease in LC3-II, but only in the liver. After weaning (d18), the offspring of HFD-O animals showed impairment of autophagy markers in both tissues compared to control offspring (SC-O). Between day 18 and day 42, both groups received a control diet and we observed that the protein content of p62 remained increased in the livers of the HFD-O offspring. However, after 82days, we did not find any modulation in offspring autophagy proteins. On the other hand, when the offspring of obese dams that received an HFD from day 42 until day 82 (OH-H) were compared with the offspring from the controls that only received an HFD in adulthood (OC-H), we saw impairment in autophagy proteins in both tissues. In conclusion, this study describes that HFD-O offspring showed early impairment of autophagy proteins. Although the molecular mechanisms have not been explored, it is possible that changes in autophagy markers could be associated with metabolic disturbances of offspring.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Lactação , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica/efeitos adversos , Feminino , Desenvolvimento Fetal , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Especificidade de Órgãos , Obesidade Infantil/etiologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Gravidez , Complicações na Gravidez/etiologia , Complicações na Gravidez/fisiopatologia , Distribuição Aleatória , Proteína Sequestossoma-1/genética , Desmame
13.
Mol Cell Endocrinol ; 422: 192-202, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26687064

RESUMO

Cholinergic anti-inflammatory pathway (CAP) prevents inflammatory cytokines production. The main was to evaluate the effect of maternal obesity on cholinergic pathway in the offspring. Female mice were subjected to either standard chow (SC) or high-fat diet (HFD) during pregnancy and the lactation period. After weaning, only male offspring from HFD dams (HFD-O) and from SC dams (SC-O) were fed the SC diet. Key proteins of the CAP were downregulated and serum TNF-α was elevated in the HFD-O mice. STAT3 and NF-κB activation in HFD-O mice ICV injected with nicotine (agonist) were lower than SC-O mice. Basal cholinesterase activity was upregulated in HFD-O mice in both investigated tissues. Lipopolysaccharide increased TNF-α and IL-1ß expression in the liver and WAT of SC-O mice, but this effect was greater in HFD-O mice. In conclusion these changes exacerbated cytokine production in response to LPS and contributed to the reduced sensitivity of the CAP.


Assuntos
Tecido Adiposo Branco/enzimologia , Dieta Hiperlipídica/efeitos adversos , Lactação/efeitos dos fármacos , Fígado/enzimologia , Obesidade/imunologia , Gravidez/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Colinesterases/metabolismo , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lactação/imunologia , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Obesidade/enzimologia , Obesidade/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...