Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(9): 6679-6691, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37692331

RESUMO

Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.

2.
ACS Appl Mater Interfaces ; 14(30): 35276-35286, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867887

RESUMO

In this study, we present a thermoplasmonic transparent ink based on a colloidal dispersion of indium tin oxide (ITO) nanoparticles, which can offer several advantages as anti-counterfeiting technology. The custom ink could be directly printed on several substrates, and it is transparent under visible light but is able to generate heat by absorption of NIR radiation. Dynamic temperature mapping of the printed motifs was performed by using a thermal camera while irradiating the samples with an IR lamp. The printed samples presented fine features (in the order of 75 µm) and high thermal resolution (of about 250 µm). The findings are supported by thermal finite-element simulations, which also allow us to explore the effect of different substrate characteristics on the thermal readout. Finally, we built a demonstrator comprising a QR Code invisible to the naked eye, which became visible in thermal images under NIR radiation. The high transparency of the printed ink and the high speed of the thermal reading (figures appear/disappear in less than 1 s) offer an extremely promising strategy toward low-cost, scalable production of photothermally active invisible labels.

3.
ACS Appl Nano Mater ; 4(2): 1057-1066, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33778418

RESUMO

Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.

4.
Nanotoxicology ; 13(9): 1197-1209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437063

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as diagnostic agents in magnetic resonance imaging (MRI), for drug delivery vehicles and in hyperthermia treatment of tumors. Although the potential benefits of SPIONs are considerable, there is a distinct need to identify any potential cellular damage associated with their use. Since human ether à go-go-related gene (hERG) channel, a protein involved in the repolarization phase of cardiac action potential, is considered one of the main targets in the drug discovery process, we decided to evaluate the effects of SPIONs on hERG channel activity and to determine whether the oxidation state, the dimensions and the coating of nanoparticles (NPs) can influence the interaction with hERG channel. Using patch clamp recordings, we found that SPIONs inhibit hERG current and this effect depends on the coating of NPs. In particular, SPIONs with covalent coating aminopropylphosphonic acid (APPA) have a milder effect on hERG activity. We observed that the time-course of hERG channel modulation by SPIONs is biphasic, with a transient increase (∼20% of the amplitude) occurring within the first 1-3 min of perfusion of NPs, followed by a slower inhibition. Moreover, in the presence of SPIONs, deactivation kinetics accelerated and the activation and inactivation I-V curves were right-shifted, similarly to the effect described for the binding of other divalent metal ions (e.g. Cd2+ and Zn2+). Finally, our data show that a bigger size and the complete oxidation of SPIONs can significantly decrease hERG channel inhibition. Taken together, these results support the view that Fe2+ ions released from magnetite NPs may represent a cardiac risk factor, since they alter hERG gating and these alterations could compromise the cardiac action potential.


Assuntos
Canal de Potássio ERG1/efeitos dos fármacos , Nanopartículas de Magnetita/química , Potenciais de Ação/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Cinética , Transdução de Sinais
5.
ACS Nano ; 13(7): 7716-7728, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31173684

RESUMO

The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like, for example, biomedicine. Therefore, having an accurate control over the nanoparticle shape and size, while preserving the crystallinity, becomes crucial for many applications. However, despite the increasing interest in spinel oxide nanocubes there are relatively few studies on this morphology due to the difficulty to synthesize perfectly defined cubic nanostructures, especially below 20 nm. Here we present a rationally designed synthesis pathway based on the thermal decomposition of iron(III) acetylacetonate to obtain high quality nanocubes over a wide range of sizes. This pathway enables the synthesis of monodisperse Fe3O4 nanocubes with edge length in the 9-80 nm range, with excellent cubic morphology and high crystallinity by only minor adjustments in the synthesis parameters. The accurate size control provides evidence that even 1-2 nm size variations can be critical in determining the functional properties, for example, for improved nuclear magnetic resonance T2 contrast or enhanced magnetic hyperthermia. The rationale behind the changes introduced in the synthesis procedure (e.g., the use of three solvents or adding Na-oleate) is carefully discussed. The versatility of this synthesis route is demonstrated by expanding its capability to grow other spinel oxides such as Co-ferrites, Mn-ferrites, and Mn3O4 of different sizes. The simplicity and adaptability of this synthesis scheme may ease the development of complex oxide nanocubes for a wide variety of applications.

6.
J Nanosci Nanotechnol ; 19(8): 4946-4953, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913806

RESUMO

The optical and magneto-optical (MO) properties of magneto-plasmonic nanocomposite films made up of a transparent polymer with a dispersion of cobalt ferrite (CFO) nanoparticles (NPs) and different concentrations of Au NPs are investigated. The volumetric concentrations of CFO and Au NPs, around 3%, and below 7‰ respectively, are below the percolation limit, and hence the nanocom-posite films constitute models for investigating the influence of the electromagnetic field generated at the surface plasmon resonance of Au NPs on the magneto-optical properties of CFO NPs. The plasmon resonance is present in these magneto-plasmonic composites, red-shifted with respect to the bare Au NPs and covering the spectral region where charge-transfer and crystal field MO transitions can be excited. Moreover, the magneto-optical hysteresis loops were measured in the whole spectral region. We observe that the hysteresis loops shape is a fingerprint of the different MO transitions of the CFO NPs. The strength of the MO peak around 750 nm, corresponding to the Crystal Field transition is damped respect to the corresponding peak of the CFO NPs. The strength of this peak evolves non-monotonically with the Au NPs concentration. On the other hand, the MO band around 550 nm, excited by Charge Transfer transitions, changes sign when Au NPs are present. In addition, a second MO contribution is observed. Our results demonstrate that the interactions between plasmon resonance and MO effects are not only determined by the stronger local electromagnetic fields at the resonance but they depend on the type MO transition that is involved in these oxides. This study helps to understand and design the magneto plasmonic nano-structures and applications, for example in biomedicine and sensing, in which random and weak dipolar interparticle interactions between plasmonic and magnetic nanostructures are present.

7.
J Nanosci Nanotechnol ; 19(8): 4964-4973, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913808

RESUMO

Iron oxide nanoparticles mineralized within the internal cavity of Ferritin protein cage are extremely appealing for the realization of multifunctional therapeutic and diagnostic agents for cancer treatment by drug delivery, magnetic fluid hyperthermia (MFH) and magnetic resonance imaging. Being the maximum mean size imposed by the internal diameter of the protein shell (ca. 8 nm) too small for the use of these systems in MFH, a valuable strategy for the improvement of the hyperthermic efficiency is increasing the magnetic anisotropy by doping the iron oxide with divalent Co ions. This strategy has been demonstrated to be highly efficient in the case of iron oxide nanoparticles mineralized in Human Ferritin (HFt). However, a deterioration of nanoparticles crystallinity and consequently a reduction of the hyperthermic efficiency were observed with increasing Co-doping. In this contribution, we compare two series of Co-doped iron oxide nanoparticles (Co-doping level up to 15%) mineralized into HFt and into Ferritin from the archaea Pirococcus Furiosus (PfFt), the protein structure of which differs for the nucleation sites, with the aim of increasing the crystalline quality of the inorganic cores for larger Co doping. Highly monodisperse nanoparticles of 6-7 nm were obtained in both series. The structural and magnetic characterization indicate that the PfFt series is less subjected to crystallinity deterioration with increasing Co content with respect to the HFt one. Such difference is reflected in the hyperthermic efficiency, which reaches the maximum value for different intermediate Co-doping (10% and 5% for PfFt and HFt, respectively), and goes to zero for further Co-doping increments.

8.
J Nanosci Nanotechnol ; 19(8): 4980-4986, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913810

RESUMO

Cobalt ferrite nanoparticles have been attracting considerable interest in the recent years because of the large number of potential applications, including magnetic storage, magnetic fluid hyperthermia and as contrast agents for magnetic resonance imaging. Physical properties of this class of materials depend critically on a number of parameters, including crystallinity, stoichiometry and cation distribution. In this work we have performed a Resonant Inelastic soft X-ray Scattering (RIXS) study on a series of 5 nm cobalt-doped maghemite nanoparticles to obtain direct quantitative information on cation distribution as a function of cobalt doping. We found that the distribution of divalent cobalt is stable in the investigated doping range and slightly different from that of bulk, stoichiometric cobalt ferrite. These results confirm that cobalt doping can be used to finely tune the magnetic properties of nanostructured ferrites without modifying their structural integrity.

9.
Interface Focus ; 6(6): 20160058, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27920896

RESUMO

Gold-iron oxide composites were obtained by in situ reduction of an Au(III) precursor by an organic reductant (either potassium citrate or tiopronin) in a dispersion of preformed iron oxide ultrasmall magnetic (USM) nanoparticles. X-ray diffraction, transmission electron microscopy, chemical analysis and mid-infrared spectroscopy show the successful deposition of gold domains on the preformed magnetic nanoparticles, and the occurrence of either citrate or tiopronin as surface coating. The potential of the USM@Au nanoheterostructures as heat mediators for therapy through magnetic fluid hyperthermia was determined by calorimetric measurements under sample irradiation by an alternating magnetic field with intensity and frequency within the safe values for biomedical use. The USM@Au composites showed to be active heat mediators for magnetic fluid hyperthermia, leading to a rapid increase in temperature under exposure to an alternating magnetic field even under the very mild experimental conditions adopted, and their potential was assessed by determining their specific absorption rate (SAR) and compared with the pure iron oxide nanoparticles. Calorimetric investigation of the synthesized nanostructures enabled us to point out the effect of different experimental conditions on the SAR value, which is to date the parameter used for the assessment of the hyperthermic efficiency.

10.
Chemistry ; 22(19): 6666-75, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27009887

RESUMO

Direct interactions between nanoparticles of Mn-doped magnetite or maghemite (clearly differentiated by Raman spectroscopy) grouped in spherical clusters minimize the effect related to their characteristic magnetic dead layer at the surface. Hence, the clustering process jointly with the manganese doping renders these ferrite nanostructures very attractive as displaying increased saturation magnetization, offering, consequently, outstanding values of the specific absorption rate (SAR) for heat delivery. The whole picture for bio-related applications has been considered, with issues related to magnetic manipulation, colloidal stability, and biocompatibility.

11.
Gels ; 1(1): 24-43, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30674163

RESUMO

The chemical, biological and physical properties of carboxymethylcellulose (CMC) hydrogels with silanized magnetite (Fe3O4) nanoparticles (NPs) as cross-linker were investigated and compared with the analogous hydrogel obtained by using 1,3-diaminopropane (DAP) as cross-linker. The magnetic hydrogel was characterized from the chemical point of view by FT-IR, whereas the morphology of the hydrogel was investigated by FESEM and STEM. The water uptake and rheological measurements reveal how much the swelling and mechanical properties change when CMC is cross-linked with silanized magnetite NPs instead of with DAP. As far as the biological properties, the hybrid hydrogel neither exerts any adverse effect nor any alteration on the cells. The magnetic hydrogels show magnetic hysteresis at 2.5 K as well as at 300 K. Magnetic measurements show that the saturation magnetization, remanent magnetization and coercive field of the NPs are not influenced significantly by the silanization treatment. The magnetic hydrogel was tested as controlled drug delivery system. The release of DOXO from the hydrogel is significantly enhanced by exposing it to an alternating magnetic field. Under our experimental conditions (2 mT and 40 kHz), no temperature increase of the hydrogel was measured, testifying that the mechanism for the enhancement of drug release under the AMF involves the twisting of the polymeric chains. A static magnetic field (0.5 T) does not influence the drug release from the hydrogel, compared with that without magnetic field.

12.
ACS Nano ; 8(5): 4705-19, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24689973

RESUMO

Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform.


Assuntos
Cobalto/química , Compostos Férricos/química , Ferritinas/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Neoplasias/terapia , Animais , Anisotropia , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Humanos , Magnetismo , Melanoma/tratamento farmacológico , Melanoma Experimental , Camundongos , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Peptídeos/química , alfa-MSH/química
13.
Biomater Sci ; 2(9): 1158-1171, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32481889

RESUMO

Water dispersible Gd3+,Yb3+,Er3+ and Gd3+,Yb3+,Tm3+ doped CaF2 nanoparticles (NPs) were prepared by one-pot hydrothermal synthesis using citrate ions as capping agents without the need for any post-synthesis reaction. UC emissions are easily observed in the visible and infrared regions upon NIR diode laser excitation at 980 nm. EPR spectroscopy confirms the substitutional nature of the rare-earth doping, while magnetometric studies reveal that the NPs have a useful magnetization. MRI experiments conducted in vivo show that after 40 min from the injection, the NPs localize in the liver and spleen. Electron microscopy images of liver tissue reveal that the NPs are located in the Kupffer cells, although a small amount is also found in the hepatocytes. An excitation with a 980 nm emission on the excised liver and epithelial tissue induces clearly visible UC emission. The local temperature upon 980 nm irradiation was monitored in situ and it was found to increase slowly with the exposure time, maintaining under 1-2 °C for less than 60 second exposure. The NPs show a low toxicity towards cultured HeLa cells and human primary dendritic cells (DCs), and did not induce pro-inflammatory cytokine secretion by cultured human DCs, indicating that the NPs do not cause relevant adverse reactions in immune cells. Therefore, the present NPs are suitable candidates to be efficiently used in surgery applications, where spatial resolution and lack of harmful effects on human health are important issues.

14.
J Biomed Nanotechnol ; 9(6): 949-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23858959

RESUMO

Dual targeted drug delivery systems represent a potential platform for developing efficient vector to tumor sites. In this study we evaluated a folate- and magnetic-targeted nanocarriers based on 10 nm iron oxide nanodomais coated with the properly synthesized and characterized folic acid (FA)-functionalized amphiphilic copolymer PHEA-PLA-PEG-FA. FA was chemically conjugated to one end of diamino-polyethylene glycol of 2000 Da, in order to ensure its exposition on the polymer coated magnetic nanoparticles (MNPs-FA). The prepared nanoparticles have been exhaustively characterized by different methods, including DLS, SEM, FT-IR and magnetic measurements. Magnetic nanoparticles showed dimension of about 37 nm with a narrow size distribution and a characteristic superparamagnetic behaviour. The lack of cytotoxicity of MNPs-FA and MNPs was assessed both on MCF7 cells, used as a model tumor cell line, and on 16HBE, used as normal human cell model, by evaluating cell viability using MTS assay, while the preferential internalization of MNPs-FA into tumor cells rather that into normal cells was confirmed by the quantization of internalized iron oxide. Uptake studies were also performed in the presence of a permanent magnet in order to verify the synergistic effect of magnetic field in enhancing the internalization of magnetic nanoparticles. Finally, real-time confocal microscopy experiments were carried out to further confirmed that FA ligand enhances the MNPs-FA accumulation into cancer cell cytoplasm.


Assuntos
Ácido Fólico/farmacocinética , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Terapia de Alvo Molecular/métodos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Polímeros/química , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/uso terapêutico , Ácido Fólico/química , Humanos , Células MCF-7 , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Neoplasias Experimentais/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...