Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 203(2): 621-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27270696

RESUMO

Since its humble start as a model organism in two European laboratories in the 1940s and 1950s, the fission yeast Schizosaccharomyces pombe has grown to become one of the best-studied eukaryotes today. This article outlines the way in which interest in S. pombe developed and spread from Europe to Japan, North America, and elsewhere from its beginnings up to the first International Meeting devoted to this yeast in 1999. We describe the expansion of S. pombe research during this period with an emphasis on many of the individual researchers involved and their interactions that resulted in the development of today's vibrant community.


Assuntos
Genética/história , Schizosaccharomyces/genética , História do Século XX , História do Século XXI
2.
Genetics ; 201(2): 403-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26447128

RESUMO

The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe.


Assuntos
Cromossomos Fúngicos/genética , Replicação do DNA/genética , Recombinação Homóloga/genética , Schizosaccharomyces/genética , Dano ao DNA/genética , Genoma Fúngico , Estágios do Ciclo de Vida/genética , Modelos Genéticos , Pesquisa
3.
J Cell Sci ; 119(Pt 2): 292-302, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16390871

RESUMO

Cdc37 is a molecular chaperone whose clients are predominantly protein kinases, many of which are important in cell-cycle progression. Temperature-sensitive mutants of cdc37 in Schizosaccharomyces pombe are lethal at the restrictive temperature, arresting cell division within a single cell cycle. These mutant cells elongate during incubation at the restrictive temperature, consistent with a cell-cycle defect. The cell-cycle arrest arises from defective function of the mutant Cdc37 proteins rather than a reduction in Cdc37 protein levels. Around 80% of the arrested, elongated cells contain a single nucleus and replicated (2C) DNA content, indicating that these mutants arrest the cell cycle in G2 or mitosis (M). Cytological observations show that the majority of cells arrest in G2. In fission yeast, a G2 cell-cycle arrest can arise by inactivation of the cyclin-dependent kinase (Cdk) Cdc2 that regulates entry into mitosis. Studies of the cdc37 temperature-sensitive mutants show a genetic interaction with some cdc2 alleles and overexpression of cdc2 rescues the lethality of some cdc37 alleles at the restrictive temperature, suggesting that Cdc2 is a likely client for the Cdc37 molecular chaperone. In cdc37 temperature-sensitive mutants at the restrictive temperature, the level of Cdc2 protein remains constant but Cdc2 protein kinase activity is greatly reduced. Inactivation of Cdc2 appears to result from the inability to form complexes with its mitotic cyclin partner Cdc13. Further evidence for Cdc2 being a client of Cdc37 in S. pombe comes from the identification of genetic and biochemical interactions between these proteins.


Assuntos
Ciclo Celular/fisiologia , Ciclina B/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Chaperonas Moleculares/genética , Fenótipo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Temperatura
4.
FEBS J ; 272(16): 4129-40, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098195

RESUMO

Cdc37 is a molecular chaperone that interacts with a range of clients and co-chaperones, forming various high molecular mass complexes. Cdc37 sequence homology among species is low. High homology between yeast and metazoan proteins is restricted to the extreme N-terminal region, which is known to bind clients that are predominantly protein kinases. We show that despite the low homology, both Saccharomyces cerevisiae and human Cdc37 are able to substitute for the Schizosaccharomyces pombe protein in a strain deleted for the endogenous cdc37 gene. Expression of a construct consisting of only the N-terminal domain of S. pombe Cdc37, lacking the postulated heat-shock protein (Hsp) 90-binding and homodimerization domains, can also sustain cellular viability, indicating that Cdc37 dimerization and interactions with the cochaperone Hsp90 may not be essential for Cdc37 function in S. pombe. Biochemical investigations showed that a small proportion of total cellular Cdc37 occurs in a high molecular mass complex that also contains Hsp90. These data indicate that the N-terminal domain of Cdc37 carries out essential functions independently of the Hsp90-binding domain and dimerization of the chaperone itself.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/fisiologia , Schizosaccharomyces/citologia , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Chaperoninas , Cromatografia em Gel , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Humanos , Imunoprecipitação , Chaperonas Moleculares/química , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Peso Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...