Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Genet ; 56(1): 85-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092881

RESUMO

Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1ß (IL-1ß) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1ß. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1ß expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1ß and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.


Assuntos
Cromatina , Inflamação , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Cromatina/genética , Inflamação/genética , Inflamação/metabolismo , Citocinas , Anti-Inflamatórios , Interleucina-1/metabolismo
2.
J Genet Genomics ; 50(6): 434-446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36681271

RESUMO

Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth or to the usual delayed BCG. Genome-wide cytokine cytokine quantitative trait loci (cQTL) mapping revealed 12 independent loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.


Assuntos
Vacina BCG , Citocinas , Recém-Nascido , Lactente , Humanos , Criança , Vacina BCG/genética , Citocinas/genética , África Ocidental , Vacinação
3.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001732

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Imunidade Inata , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , SARS-CoV-2 , Fatores de Transcrição , COVID-19/genética , COVID-19/imunologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , SARS-CoV-2/imunologia , Fatores de Transcrição/metabolismo
5.
Immunity ; 54(1): 32-43, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33220235

RESUMO

The last few years have witnessed an increasing body of evidence that challenges the traditional view that immunological memory is an exclusive trait of the adaptive immune system. Myeloid cells can show increased responsiveness upon subsequent stimulation with the same or a different stimulus, well after the initial challenge. This de facto innate immune memory has been termed "trained immunity" and is involved in infections, vaccination and inflammatory diseases. Trained immunity is based on two main pillars: the epigenetic and metabolic reprogramming of cells. In this review we discuss the latest insights into the epigenetic mechanisms behind the induction of trained immunity, as well as the role of different cellular metabolites and metabolic networks in the induction, regulation and maintenance of trained immunity.


Assuntos
Reprogramação Celular/imunologia , Doenças do Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Redes e Vias Metabólicas/imunologia , Células Mieloides/imunologia , Animais , Epigênese Genética , Humanos , Imunidade Inata , Memória Imunológica
7.
Methods Mol Biol ; 2157: 197-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820405

RESUMO

The organization of the eukaryotic nucleus facilitates functional chromatin contacts which regulate gene transcription. Despite this being extensively studied through population-based chromatin contact mapping and microscopic observations in single cells, the spatiotemporal dynamics of chromatin behavior have largely remained elusive. The current methods to label and observe specific endogenous genomic loci in living cells have been challenging to implement and too invasive to biological processes. In this protocol, we describe the use of a recently developed DNA labelling strategy (ANCHOR) with CRISPR/Cas9 gene editing, to discreetly label genes for live cell imaging to study chromatin dynamics. Our approach improves on some of the fundamental shortfalls associated with current labelling strategies and has the potential for multiplexed observations.


Assuntos
Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Microscopia/métodos , Edição de Genes/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Reação em Cadeia da Polimerase
8.
Cell Rep ; 33(7): 108387, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207187

RESUMO

The tuberculosis vaccine bacillus Calmette-Guérin (BCG) protects against some heterologous infections, probably via induction of non-specific innate immune memory in monocytes and natural killer (NK) cells, a process known as trained immunity. Recent studies have revealed that the induction of trained immunity is associated with a bias toward granulopoiesis in bone marrow hematopoietic progenitor cells, but it is unknown whether BCG vaccination also leads to functional reprogramming of mature neutrophils. Here, we show that BCG vaccination of healthy humans induces long-lasting changes in neutrophil phenotype, characterized by increased expression of activation markers and antimicrobial function. The enhanced function of human neutrophils persists for at least 3 months after vaccination and is associated with genome-wide epigenetic modifications in trimethylation at histone 3 lysine 4. Functional reprogramming of neutrophils by the induction of trained immunity might offer novel therapeutic strategies in clinical conditions that could benefit from modulation of neutrophil effector function.


Assuntos
Vacina BCG/imunologia , Reprogramação Celular/imunologia , Neutrófilos/efeitos dos fármacos , Imunidade Adaptativa , Adulto , Idoso , Vacina BCG/metabolismo , Feminino , Humanos , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/metabolismo , Tuberculose/imunologia , Vacinação/métodos
9.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022222

RESUMO

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Assuntos
Cromossomos Humanos Par 17/química , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Sequência de Aminoácidos , Diferenciação Celular , Reprogramação Celular , Criança , Mapeamento Cromossômico , Estudos de Coortes , Elementos Facilitadores Genéticos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Genes Dominantes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Cultura Primária de Células , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
10.
Cell Rep ; 31(3): 107548, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320649

RESUMO

Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by ß-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of ß-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , beta-Glucanas/metabolismo , Animais , Humanos , Imunidade , Camundongos , Fosforilação Oxidativa
11.
Curr Opin Cell Biol ; 63: 68-75, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991317

RESUMO

The epigenetic and functional reprogramming of immune genes during induction of trained immunity is accompanied by the metabolic rewiring of cellular state. This memory is induced in the hematopoietic niche and propagated to daughter cells, generating epigenetically and metabolically reprogrammed innate immune cells that are greatly enhanced in their capacity to resolve inflammation. In particular, these cells show accumulation of H3K4me3 and H3K27Ac epigenetic marks on multiple immune gene promoters and associated enhancers. However, the mechanism governing how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood, until now. Here, we discuss some recent advances in the regulation of trained immunity, with a particular focus on the mechanistic role of a novel class of long non-coding RNAs in the establishment of epigenetic marks on trained immune gene promoters.


Assuntos
Epigenômica/métodos , Imunidade Inata/genética , Memória Imunológica/genética , Humanos
12.
Front Cell Dev Biol ; 7: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733945

RESUMO

Human innate immune cells exposed to certain infections or stimuli develop enhanced immune responses upon re-infection with a different second stimulus, a process termed trained immunity. Recent studies have revealed that hematopoietic stem cells (HSCs) are integral to trained immune responses as they are able to "remember" transcriptional responses and transmit this state to their progeny to educate them how to respond to future infections. The macrophages that arise from trained HSCs are epigenetically reprogrammed and as a result robustly express immune genes, enhancing their capability to resolve infection. Accumulation of H3K4me3 epigenetic marks on multiple immune gene promoters underlie robust transcriptional responses during trained immune responses. However, the mechanism underpinning how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood. In this review, we discuss the previously unexplored contributions of nuclear architecture and long non-coding RNAs on H3K4me3 promoter priming in trained immunity. Altering the activity of these lncRNAs presents a promising therapeutic approach to achieve immunomodulation in inflammatory disease states.

13.
Nat Genet ; 51(2): 364, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30647470

RESUMO

In the version of this article initially published, '+' and '-' labels were missing from the graph keys at the bottom of Fig. 8d. The error has been corrected in the HTML and PDF versions of the article.

14.
Nat Genet ; 51(1): 138-150, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531872

RESUMO

Accumulation of trimethylation of histone H3 at lysine 4 (H3K4me3) on immune-related gene promoters underlies robust transcription during trained immunity. However, the molecular basis for this remains unknown. Here we show three-dimensional chromatin topology enables immune genes to engage in chromosomal contacts with a subset of long noncoding RNAs (lncRNAs) we have defined as immune gene-priming lncRNAs (IPLs). We show that the prototypical IPL, UMLILO, acts in cis to direct the WD repeat-containing protein 5 (WDR5)-mixed lineage leukemia protein 1 (MLL1) complex across the chemokine promoters, facilitating their H3K4me3 epigenetic priming. This mechanism is shared amongst several trained immune genes. Training mediated by ß-glucan epigenetically reprograms immune genes by upregulating IPLs in manner dependent on nuclear factor of activated T cells. The murine chemokine topologically associating domain lacks an IPL, and the Cxcl genes are not trained. Strikingly, the insertion of UMLILO into the chemokine topologically associating domain in mouse macrophages resulted in training of Cxcl genes. This provides strong evidence that lncRNA-mediated regulation is central to the establishment of trained immunity.


Assuntos
Núcleo Celular/genética , RNA Longo não Codificante/genética , Transcrição Gênica/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/genética , Epigênese Genética/genética , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/fisiologia , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , Regulação para Cima/genética
15.
Front Immunol ; 9: 3184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30761161

RESUMO

Trained immunity describes the ability of innate immune cells to form immunological memories of prior encounters with pathogens. Recollection of these memories during a secondary encounter manifests a broadly enhanced inflammatory response characterized by the increased transcription of innate immune genes. Despite this phenomenon having been described over a decade ago, our understanding of the molecular mechanisms responsible for this phenotype is still incomplete. Here we present an overview of the molecular events that lead to training. For the first time, we highlight the mechanistic role of a novel class of long non-coding RNAs (lncRNAs) in the establishment and maintenance of discrete, long lasting epigenetic modifications that are causal to the trained immune response. This recent insight fills in significant gaps in our understanding of trained immunity and reveals novel ways to exploit trained immunity for therapeutic purposes.


Assuntos
Metabolismo Energético/genética , Epigênese Genética , Imunidade , Memória Imunológica , RNA Longo não Codificante/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigenômica , Regulação da Expressão Gênica , Humanos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
16.
Epigenomics ; 9(10): 1317-1327, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28875715

RESUMO

Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.


Assuntos
Edição de Genes/métodos , Genômica/métodos , RNA Longo não Codificante/genética , Imagem Individual de Molécula/métodos , Animais , Sistemas CRISPR-Cas , Epigênese Genética , Humanos , Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/metabolismo
17.
Trends Genet ; 33(6): 375-377, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359583

RESUMO

How does the non-coding portion of the genome contribute to the regulation of genome architecture? A recent paper by Tan et al. focuses on the relationship between cis-acting complex-trait-associated lincRNAs and the formation of chromosomal contacts in topologically associating domains (TADs).


Assuntos
Cromossomos/genética , Elementos Facilitadores Genéticos , RNA Longo não Codificante/genética , Epigênese Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética
18.
Methods Mol Biol ; 1468: 19-32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662867

RESUMO

Enhancers are principal regulators that allow spatiotemporal tissue-specific control of gene expression. While mounting evidence suggests that enhancer-derived long noncoding RNAs (long ncRNAs), including enhancer RNAs (eRNAs), are an important component of enhancer function, their expression has not been broadly analyzed at a single cell level via imaging techniques. This protocol describes a method to image eRNA in single cells by in situ hybridization followed by tyramide signal amplification (TSA). The procedure can be multiplexed to simultaneously visualize both eRNA and protein-coding transcript at the site of transcriptional elongation, thereby permitting analysis of dynamics between the two transcript species in single cells. Our approach is not limited to eRNAs, but can be implemented on other transcripts.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/genética , Análise de Célula Única/métodos , Elementos Facilitadores Genéticos , Células Endoteliais da Veia Umbilical Humana , Humanos , Transcrição Gênica
19.
Nucleus ; 5(2): 103-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637837

RESUMO

Chromatin loops are pervasive and permit the tight compaction of DNA within the confined space of the nucleus. Looping enables distal genes and DNA elements to engage in chromosomal contact, to form multigene complexes. Advances in biochemical and imaging techniques reveal that loop-mediated contact is strongly correlated with transcription of interacting DNA. However, these approaches only provide a snapshot of events and therefore are unable to reveal the dynamics of multigene complex assembly. This highlights the necessity to develop single cell-based assays that provide single molecule resolution, and are able to functionally interrogate the role of chromosomal contact on gene regulation. To this end, high-resolution single cell imaging regimes, combined with genome editing approaches, are proving to be pivotal to advancing our understanding of loop-mediated dynamics.


Assuntos
Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Genes/genética , Cromatina/genética , Cromatina/metabolismo , Genômica , Humanos
20.
Transcription ; 5(3): e28658, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25764331

RESUMO

Recent functional studies have unveiled the significant role chromatin topology plays in gene regulation. Several lines of evidence suggest genes access necessary factors for transcription by forming chromatin loops. A clearer picture of the players involved in chromatin organization, including lncRNA, is emerging.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/metabolismo , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Humanos , Proteínas Repressoras/metabolismo , Iniciação da Transcrição Genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...