Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166326, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942307

RESUMO

Normal cells depend on autophagy to maintain cellular homeostasis by recycling damaged organelles and misfolded proteins and degrading toxic agents. Similar to apoptosis, targeting autophagy has been under attention in cancer therapy. However, autophagy has both pro-survival and pro-death functions in tumors, and its targeting requires further elucidation. The current review focuses on using nanoparticles for targeting autophagy in cancer treatment. Nanocarriers can deliver autophagy regulators along with chemotherapeutic agents leading to intracellular accumulation in cancer cells and synergistic cancer therapy. Furthermore, genetic tools such as siRNA and shRNA can be used for targeting molecular components that regulate autophagy, such as the ATG12-ATG5-ATG16L1 complex. A number of nanostructures, such as gold and zinc oxide nanoparticles, can be used to enhance oxidative stress-mediated apoptosis and autophagy, reducing cancer progression. Further, using nanoparticles to modulate autophagy potentiates the anti-tumor effects of cisplatin and gefitinib during chemotherapy. Polymeric nanoparticles, lipid-based nanostructures and carbon-based nanomaterials are among other nanoparticles capable of regulating autophagy in cancer cells. Of note, various regulatory components of autophagy such as ATGs, Beclin-1 and LC3-II can be affected by nanomaterials. Based on the role of nanomaterial-induced autophagy as pro-survival or pro-death, further targeting can potentiate the fight against cancer cells.


Assuntos
Antineoplásicos/farmacologia , Autofagia , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Nanopartículas/química , Neoplasias/patologia
2.
Pharmacol Res ; 171: 105759, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245864

RESUMO

As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Ácidos Cafeicos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacocinética , Ácidos Cafeicos/farmacocinética , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...