Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 99-108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340518

RESUMO

HYPOTHESIS: There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies. EXPERIMENTS: For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the molecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS). FINDINGS: NMR and SANS investigations strengthen each other and allow a clear picture of the change of copolymer solubility and related copolymer self-assembly as a function of temperature. At the molecular scale, dehydrating NIPAM units drag N,N-dimethyl acrylamide (DMA) moieties with them in a gradual collapse of the copolymer chain; this induces a morphological transition of the self-assemblies from star-like nanostructures to crew-cut micelles. Interestingly, the transition spans a temperature range which depends on the monomer distribution profile in the copolymer chain, with the asymmetric triblock copolymer specimen revealing the broadest one. We show that the broad morphological transitions associated with gradient copolymers can be mimicked and even surpassed by the use of stepwise gradient (asymmetric) copolymers, which can be more easily and reproducibly synthesized than linear gradient copolymers.

2.
Colloids Surf B Biointerfaces ; 220: 112884, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209550

RESUMO

The design of drug delivery systems (DDS) for the encapsulation of therapeutic agents and the controlled release to the target site of the disease is one of the main goals of nanomedicine. Although already explored in an extensive number of studies over the years, lipid assemblies, and particularly liposomes, are still considered the most promising and interesting candidates as DDS due to their biocompatibility and structural similarity with plasma membranes. Lately, this research area has been extended to include more complex lipid assemblies, such as cubosomes. Cubosomes are an emerging structural platform for the delivery of molecules with pharmaceutical interest, such as drugs, bioactives and contrast agents. Here we report on the application of a thermo-responsive copolymer poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a thermoresponsive stabilizer of lipid-based nanoparticles for drug-delivery. First, we assessed the affinity of PDMA-b-PNIPAM towards supported and free-standing bilayers; then, we explored the colloidal and thermoresponsive properties of cubic self-assembled DDS composed of glycerol-monooleate (GMO), where PDMA-b-PNIPAM replaces the conventional stabilizer Pluronic F127 (PEOx-PPOy-PEOx), normally used for cubosomes. We prepared dispersions of cubic lipid nanoparticles with two PDMA-b-PNIPAM block copolymers of different molar mass. The colloidal properties were then assessed and compared to those exhibited by standard lipid cubic dispersions stabilized by Pluronic F-127, combining a series of experimental techniques (Quartz Crystal Microbalance with Dissipation monitoring, Dynamic Light Scattering, Small-Angle X-rays Scattering, Cryo-Transmission Electron Microscopy). Interestingly, PDMA-b-PNIPAM stabilized cubosomes display additional benefits with respect to those stabilized by Pluronic, thanks to the combination of a "sponge " effect for the controlled release of encapsulated molecules and an increased affinity towards lipid bilayer membranes, which is a promising feature to maximize fusion with the target-cellular site.


Assuntos
Lipossomos , Nanopartículas , Preparações de Ação Retardada , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Poloxâmero/química , Excipientes
3.
Angew Chem Int Ed Engl ; 60(9): 4925-4930, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32997426

RESUMO

A series of copolymers containing 50 mol % acrylic acid (AA) and 50 mol % butyl acrylate (BA) but with differing composition profiles ranging from an AA-BA diblock copolymer to a linear gradient poly(AA-grad-BA) copolymer were synthesized and their pH-responsive self-assembly behavior was investigated. While assemblies of the AA-BA diblock copolymer were kinetically frozen, the gradient-like compositions underwent reversible changes in size and morphology in response to changes in pH. In particular, a diblock copolymer consisting of two random copolymer segments of equal length (16 mol % and 84 mol % AA content, respectively) formed spherical micelles at pH >5, a mix of spherical and wormlike micelles at pH 5 and vesicles at pH 4. These assemblies were characterized by dynamic light scattering, cryo-transmission electron microscopy and small angle neutron scattering.

4.
Macromol Rapid Commun ; 39(19): e1800357, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30221423

RESUMO

Asymmetric copolymers are a class of materials with intriguing properties. They can be defined by a distribution of monomers within the polymer chain that is neither strictly segregated, as in the case of block copolymers, nor evenly distributed throughout each chain, as in the case of statistical copolymers. This definition includes gradient copolymers as well as block copolymers that contain segments of statistical copolymer. In this review, different methods to synthesize asymmetric copolymers are first discussed. The properties of asymmetric copolymers are investigated in comparison to those of block and random counterparts of similar composition. Finally, some examples of applications of asymmetric copolymers, both academic and industrial, are demonstrated. The aim of this review is to provide a perspective on the design and synthesis of asymmetric copolymers with useful applications.


Assuntos
Modelos Químicos , Polímeros/química , Polímeros/síntese química
5.
Carbohydr Polym ; 110: 78-86, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24906731

RESUMO

Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time.


Assuntos
Compostos de Anilina/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/síntese química , Condutividade Elétrica , Compostos de Anilina/metabolismo , Materiais Biocompatíveis/metabolismo , Carragenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...