Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019608

RESUMO

The quality of recognition systems for continuous utterances in signed languages could be largely advanced within the last years. However, research efforts often do not address specific linguistic features of signed languages, as e.g., non-manual expressions. In this work, we evaluate the potential of a single video camera-based recognition system with respect to the latter. For this, we introduce a two-stage pipeline based on two-dimensional body joint positions extracted from RGB camera data. The system first separates the data flow of a signed expression into meaningful word segments on the base of a frame-wise binary Random Forest. Next, every segment is transformed into image-like shape and classified with a Convolutional Neural Network. The proposed system is then evaluated on a data set of continuous sentence expressions in Japanese Sign Language with a variation of non-manual expressions. Exploring multiple variations of data representations and network parameters, we are able to distinguish word segments of specific non-manual intonations with 86% accuracy from the underlying body joint movement data. Full sentence predictions achieve a total Word Error Rate of 15.75%. This marks an improvement of 13.22% as compared to ground truth predictions obtained from labeling insensitive towards non-manual content. Consequently, our analysis constitutes an important contribution for a better understanding of mixed manual and non-manual content in signed communication.


Assuntos
Idioma , Linguística , Redes Neurais de Computação , Língua de Sinais , Humanos , Japão , Movimento
2.
J Med Imaging (Bellingham) ; 6(3): 034001, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31338388

RESUMO

Wilms' tumor is one of the most frequent malignant solid tumors in childhood. Accurate segmentation of tumor tissue is a key step during therapy and treatment planning. Since it is difficult to obtain a comprehensive set of tumor data of children, there is no benchmark so far allowing evaluation of the quality of human or computer-based segmentations. The contributions in our paper are threefold: (i) we present the first heterogeneous Wilms' tumor benchmark data set. It contains multisequence MRI data sets before and after chemotherapy, along with ground truth annotation, approximated based on the consensus of five human experts. (ii) We analyze human expert annotations and interrater variability, finding that the current clinical practice of determining tumor volume is inaccurate and that manual annotations after chemotherapy may differ substantially. (iii) We evaluate six computer-based segmentation methods, ranging from classical approaches to recent deep-learning techniques. We show that the best ones offer a quality comparable to human expert annotations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...