Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Asian Bioeth Rev ; 16(3): 437-470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022376

RESUMO

More than 5 billion people in the world own a smartphone. More than half of these have been used to collect and process health-related data. As such, the existing volume of potentially exploitable health data is unprecedentedly large and growing rapidly. Mobile health applications (apps) on smartphones are some of the worst offenders and are increasingly being used for gathering and exchanging significant amounts of personal health data from the public. This data is often utilized for health research purposes and for algorithm training. While there are advantages to utilizing this data for expanding health knowledge, there are associated risks for the users of these apps, such as privacy concerns and the protection of their data. Consequently, gaining a deeper comprehension of how apps collect and crowdsource data is crucial. To explore how apps are crowdsourcing data and to identify potential ethical, legal, and social issues (ELSI), we conducted an examination of the Apple App Store and the Google Play Store in North America and Europe to identify apps that could potentially gather health data through crowdsourcing. Subsequently, we analyzed their privacy policies, terms of use, and other related documentation to gain insights into the utilization of users' data and the possibility of repurposing it for research or algorithm training purposes. More specifically, we reviewed privacy policies to identify clauses pertaining to the following key categories: research, data sharing, privacy/confidentiality, commercialization, and return of findings. Based on the results of these app search, we developed an App Atlas that presents apps which crowdsource data for research or algorithm training. We identified 46 apps available in the European and Canadian markets that either openly crowdsource health data for research or algorithm training or retain the legal or technical capability to do so. This app search showed an overall lack of consistency and transparency in privacy policies that poses challenges to user comprehensibility, trust, and informed consent. A significant proportion of applications presented contradictions or exhibited considerable ambiguity. For instance, the vast majority of privacy policies in the App Atlas contain ambiguous or contradictory language regarding the sharing of users' data with third parties. This raises a number of ethico-legal concerns which will require further academic and policy attention to ensure a balance between protecting individual interests and maximizing the scientific utility of crowdsourced data. This article represents a key first step in better understanding these concerns and bringing attention to this important issue. Supplementary Information: The online version contains supplementary material available at 10.1007/s41649-024-00296-3.

2.
Nat Nanotechnol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080489

RESUMO

Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.

3.
Adv Mater ; 35(18): e2211274, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36739507

RESUMO

An approach to achieving dynamic and reversible decoration of DNA-based scaffolds is demonstrated here. To do this, rationally engineered DNA tiles containing enzyme-responsive strands covalently conjugated to different molecular labels are employed. These strands are designed to be recognized and degraded by specific enzymes (i.e., Ribonuclease H, RNase H, or Uracil DNA Glycosylase, UDG) inducing their spontaneous de-hybridization from the assembled tile and replacement by a new strand conjugated to a different label. Multiple enzyme-responsive strands that specifically respond to different enzymes allow for dynamic, orthogonal, and reversible decoration of the DNA structures. As a proof-of-principle of the strategy, the possibility to orthogonally control the distribution of different labels (i.e., fluorophores and small molecules) on the same scaffold without crosstalk is demonstrated. By doing so, DNA scaffolds that display different antibody recognition patterns are obtained. The approach offers the possibility to control the decoration of higher-order supramolecular assemblies (including origami) with several functional moieties to achieve functional biomaterials with improved adaptability, precision, and sensing capabilities.


Assuntos
DNA , Nanoestruturas , DNA/química , Conformação de Ácido Nucleico , DNA Glicosilases/química
4.
Angew Chem Int Ed Engl ; 61(34): e202208367, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35762986

RESUMO

We demonstrate here the use of DNA repair enzymes to control the assembly of DNA-based structures. To do so, we employed uracil-DNA glycosylase (UDG) and formamidopyrimidine DNA glycosylase (Fpg), two enzymes involved in the base excision repair (BER) pathway. We designed two responsive nucleic acid modules containing mutated bases (deoxyuridine or 8-oxo-7,8-dihydroguanine recognized by UDG and Fpg, respectively) that, upon the enzyme repair activity, release a nucleic acid strand that induces the self-assembly of DNA tiles into tubular structures. The approach is programmable, specific and orthogonal and the two responsive modules can be used in the same solution without crosstalk. This allows to assemble structures formed by two different tiles in which the tile distribution can be accurately predicted as a function of the relative activity of each enzyme. Finally, we show that BER-enzyme inhibitors can also be used to control DNA-tile assembly in a specific and concentration-dependent manner.


Assuntos
Reparo do DNA , DNA , DNA/química , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
5.
Angew Chem Int Ed Engl ; 60(13): 7283-7289, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33415794

RESUMO

We present a new class of DNA-based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding-upon-repair DNA nanoswitches are synthetic DNA sequences containing O6 -methyl-guanine (O6 -MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of the O6 -MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding-upon-repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.


Assuntos
DNA/metabolismo , Nanotecnologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Reparo do DNA , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , O(6)-Metilguanina-DNA Metiltransferase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA