Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 18(10): e2100350, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34399029

RESUMO

Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1 H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.


Assuntos
Ascomicetos/metabolismo , Combretum/metabolismo , Metabolômica , Trichoderma/metabolismo , Ascomicetos/química , Combretum/química , Espectroscopia de Prótons por Ressonância Magnética , Trichoderma/química
2.
Chem Biodivers ; 18(7): e2100226, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998137

RESUMO

We report the evaluation of chalcone derivatives as photosystem II (PSII) and plant growth inhibitors. Chalcone derivatives were evaluated as PSII inhibitors through Chl a fluorescence measurement. (E)-Chalcone (6a) and (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (6j) showed the best results, reducing the performance index on absorption basis parameter (PIabs ) by 70 %. Additionally, the decrease of TR0 /RC and ET0 /RC parameters indicates that the chalcone derivatives limited the number of active PSII reaction centers and the amount of trapped energy within them. Compounds 6a and 6j both act as post-emergent herbicides at 50 µM, reducing the root biomass of the Ipomoea grandifolia weed by 72 % and 83 %, respectively, corroborating the fluorescence results. The selectivity against weeds as compared to valuable crops by compounds 6a and 6j were evaluated employing Zea mays and Phaseolus vulgaris plants. In these, our newly synthesized compounds showed no effects on biomass accumulation of roots and aerial parts when compared to the control, providing valuable evidence for the role of these compounds as selective inhibitors of the growth of undesired weeds.


Assuntos
Chalconas/farmacologia , Inibidores do Crescimento/farmacologia , Herbicidas/farmacologia , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Biomassa , Chalconas/síntese química , Chalconas/química , Inibidores do Crescimento/síntese química , Inibidores do Crescimento/química , Herbicidas/síntese química , Herbicidas/química , Ipomoea/efeitos dos fármacos , Ipomoea/crescimento & desenvolvimento , Estrutura Molecular , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Análise de Componente Principal , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
3.
Org Process Res Dev ; 25(8): 1966-1973, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35663840

RESUMO

We describe herein a two-step process for the conversion of serine to a wide array of optically pure unnatural amino acids. This method utilizes a photocatalytic cross-electrophile coupling between a bromoalkyl intermediate and a diverse set of aryl halides to produce artificial analogues of phenylalanine, tryptophan, and histidine. The reaction is tolerant of a broad range of functionalities and can be leveraged toward the scalable synthesis of valuable pharmaceutical scaffolds via flow technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...