Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1178-1193, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669355

RESUMO

Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/ß-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.


Assuntos
Esterases , Simulação de Dinâmica Molecular , Esterases/química , Esterases/metabolismo , Esterases/genética , Especificidade por Substrato , Domínio Catalítico , Cristalografia por Raios X , Conformação Proteica , Hidrólise , Cinética , Modelos Moleculares
2.
Elife ; 112022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226828

RESUMO

The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Antibacterianos/farmacologia , Ilhas Genômicas , Escherichia coli/genética , Escherichia coli/metabolismo , Endonucleases/metabolismo
3.
Mol Microbiol ; 118(5): 552-569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164821

RESUMO

Type 6 secretion systems (T6SSs) are specialized multiprotein complexes that inject protein effectors into prokaryotic and/or eukaryotic cells. We previously described the role of the T6SS of the phytopathogen Xanthomonas citri pv. citri as an anti-eukaryotic nanoweapon that confers resistance to predation by the amoeba Dictyostelium discoideum. Transcription of the X. citri T6SS genes is induced by a signaling cascade involving the Ser/Thr kinase PknS and the extracytoplasmic function sigma factor EcfK. Here, we used a strain overexpressing a phosphomimetic constitutively active version of EcfK (EcfKT51E ) to identify the EcfK regulon, which includes a previously uncharacterized transcription factor of the AraC-family (TagK), in addition to T6SS genes and genes encoding protein homeostasis factors. Functional studies demonstrated that TagK acts downstream of EcfK, binding directly to T6SS gene promoters and inducing T6SS expression in response to contact with amoeba cells. TagK controls a small regulon, consisting of the complete T6SS, its accessory genes and additional genes encoded within the T6SS cluster. We conclude that a singular regulatory circuit consisting of a transmembrane kinase (PknS), an alternative sigma factor (EcfK) and an AraC-type transcriptional regulator (TagK) promotes expression of the X. citri T6SS in response to a protozoan predator.


Assuntos
Dictyostelium , Sistemas de Secreção Tipo VI , Xanthomonas , Fator sigma/genética , Fator sigma/metabolismo , Fator de Transcrição AraC/genética , Regulação Bacteriana da Expressão Gênica/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Células Eucarióticas , Eucariotos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Microb Cell Fact ; 21(1): 164, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978337

RESUMO

BACKGROUND: Native-like secondary structures and biological activity have been described for proteins in inclusion bodies (IBs). Tertiary structure analysis, however, is hampered due to the necessity of mild solubilization conditions. Denaturing reagents used for IBs solubilization generally lead to the loss of these structures and to consequent reaggregation due to intermolecular interactions among exposed hydrophobic domains after removal of the solubilization reagent. The use of mild, non-denaturing solubilization processes that maintain existing structures could allow tertiary structure analysis and increase the efficiency of refolding. RESULTS: In this study we use a variety of biophysical methods to analyze protein structure in human growth hormone IBs (hGH-IBs). hGH-IBs present native-like secondary and tertiary structures, as shown by far and near-UV CD analysis. hGH-IBs present similar λmax intrinsic Trp fluorescence to the native protein (334 nm), indicative of a native-like tertiary structure. Similar fluorescence behavior was also obtained for hGH solubilized from IBs and native hGH at pH 10.0 and 2.5 kbar and after decompression. hGH-IBs expressed in E. coli were extracted to high yield and purity (95%) and solubilized using non-denaturing conditions [2.4 kbar, 0.25 M arginine (pH 10), 10 mM DTT]. After decompression, the protein was incubated at pH 7.4 in the presence of the glutathione-oxidized glutathione (GSH-GSSG) pair which led to intramolecular disulfide bond formation and refolded hGH (81% yield). CONCLUSIONS: We have shown that hGH-IBs present native-like secondary and tertiary structures and that non-denaturing methods that aim to preserve them can lead to high yields of refolded protein. It is likely that the refolding process described can be extended to different proteins and may be particularly useful to reduce the pH required for alkaline solubilization.


Assuntos
Hormônio do Crescimento Humano , Corpos de Inclusão , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Hormônio do Crescimento Humano/metabolismo , Corpos de Inclusão/metabolismo , Redobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Solubilidade
5.
Diagnostics (Basel) ; 11(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34441334

RESUMO

Rapid diagnostics is pivotal to curb SARS-CoV-2 transmission, and saliva has emerged as a practical alternative to naso/oropharyngeal (NOP) specimens. We aimed to develop a direct RT-LAMP (reverse transcription loop-mediated isothermal amplification) workflow for viral detection in saliva, and to provide more information regarding its potential in curbing COVID-19 transmission. Clinical and contrived specimens were used to optimize formulations and sample processing protocols. Salivary viral load was determined in symptomatic patients to evaluate the clinical performance of the test and to characterize saliva based on age, gender and time from onset of symptoms. Our workflow achieved an overall sensitivity of 77.2% (n = 90), with 93.2% sensitivity, 97% specificity, and 0.895 Kappa for specimens containing >102 copies/µL (n = 77). Further analyses in saliva showed that viral load peaks in the first days of symptoms and decreases afterwards, and that viral load is ~10 times lower in females compared to males, and declines following symptom onset. NOP RT-PCR data did not yield relevant associations. This work suggests that saliva reflects the transmission dynamics better than NOP specimens, and reveals gender differences that may reflect higher transmission by males. This saliva RT-LAMP workflow can be applied to track viral spread and, to maximize detection, testing should be performed immediately after symptoms are presented, especially in females.

6.
J Phys Chem Lett ; 11(24): 10446-10453, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33269932

RESUMO

The SARS-CoV-2 pandemic has already killed more than one million people worldwide. To gain entry, the virus uses its Spike protein to bind to host hACE-2 receptors on the host cell surface and mediate fusion between viral and cell membranes. As initial steps leading to virus entry involve significant changes in protein conformation as well as in the electrostatic environment in the vicinity of the Spike/hACE-2 complex, we explored the sensitivity of the interaction to changes in ionic strength through computational simulations and surface plasmon resonance. We identified two regions in the receptor-binding domain (RBD), E1 and E2, which interact differently with hACE-2. At high salt concentration, E2-mediated interactions are weakened but are compensated by strengthening E1-mediated hydrophobic interactions. These results provide a detailed molecular understanding of Spike RBD/hACE-2 complex formation and stability under a wide range of ionic strengths.


Assuntos
Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Domínios Proteicos
7.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513674

RESUMO

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Sistemas de Secreção Tipo IV/fisiologia , Sequência de Aminoácidos , Antibiose/genética , Antibiose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/fisiologia , Modelos Moleculares , Infecções Oportunistas/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Stenotrophomonas maltophilia/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
8.
Front Microbiol ; 10: 1635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379785

RESUMO

Members of the Xanthomonadales order include several plant pathogens of significant economic and agricultural impact, such as Xanthomonas spp. Type 6 secretion systems (T6SSs) are contractile nanomachines used by many bacterial species to inject protein effectors into target prokaryotic and eukaryotic cells and provide a competitive advantage for bacteria in different environments. Effectors with antibacterial properties include peptidoglycan hydrolases, lipases and phospholipases that break down structural components of the cell envelope, promoting target-cell lysis; and RNases, DNAses, and NADases that affect target-cell metabolism, arresting growth. Effectors with anti-eukaryotic properties are functionally more diverse. The T6SS of Xanthomonas citri is the only example experimentally characterized so far within the Xanthomonadales order and displays anti-eukaryotic function by providing resistance to predation by amoeba. This T6SS is regulated at the transcriptional level by a signaling cascade involving a Ser/Thr kinase and an extracytoplasmic function (ECF) sigma factor. In this review, we performed in silico analyses of 35 genomes of Xanthomonadales and showed that T6SSs are widely distributed and phylogenetically classified into three major groups. In silico predictions identified a series of proteins with known toxic domains as putative T6SS effectors, suggesting that the T6SSs of Xanthomonadales display both anti-prokaryotic and anti-eukaryotic properties depending on the phylogenetic group and bacterial species.

9.
Environ Microbiol ; 20(4): 1562-1575, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488354

RESUMO

Plant-associated bacteria of the genus Xanthomonas cause disease in a wide range of economically important crops. However, their ability to persist in the environment is still poorly understood. Predation by amoebas represents a major selective pressure to bacterial populations in the environment. In this study, we show that the X. citri type 6 secretion system (T6SS) promotes resistance to predation by the soil amoeba Dictyostelium discoideum. We found that an extracytoplasmic function (ECF) sigma factor (EcfK) is required for induction of T6SS genes during interaction with Dictyostelium. EcfK homologues are found in several environmental bacteria in association with a gene encoding a eukaryotic-like Ser/Thr kinase (pknS). Deletion of pknS causes sensitivity to amoeba predation and abolishes induction of T6SS genes. Phosphomimetic mutagenesis of EcfK identified a threonine residue (T51) that renders EcfK constitutively active in standard culture conditions. Moreover, susceptibility of ΔpknS to Dictyostelium predation can be overcome by expression of the constitutively active version EcfKT51E from a multicopy plasmid. Together, these results describe a new regulatory cascade in which PknS functions through activation of EcfK to promote T6SS expression. Our work reveals an important aspect of Xanthomonas physiology that affects its ability to persist in the environment.


Assuntos
Proteínas de Bactérias/metabolismo , Dictyostelium/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator sigma/genética , Sistemas de Secreção Tipo VI/metabolismo , Xanthomonas/metabolismo , Cadeia Alimentar , Mutagênese , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Sistemas de Secreção Tipo VI/genética , Xanthomonas/genética
10.
J Mol Biol ; 429(15): 2337-2352, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28601495

RESUMO

Leptospira interrogans serovar Copenhageni is a human pathogen that causes leptospirosis, a worldwide zoonosis. The L. interrogans genome codes for a wide array of potential diguanylate cyclase (DGC) enzymes with characteristic GGDEF domains capable of synthesizing the cyclic dinucleotide c-di-GMP, known to regulate transitions between different cellular behavioral states in bacteria. Among such enzymes, LIC13137 (Lcd1), which has an N-terminal cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA (GAF) domain and a C-terminal GGDEF domain, is notable for having close orthologs present only in pathogenic Leptospira species. Although the function and structure of GGDEF and GAF domains have been studied extensively separately, little is known about enzymes with the GAF-GGDEF architecture. In this report, we address the question of how the GAF domain regulates the DGC activity of Lcd1. The full-length Lcd1 and its GAF domain form dimers in solution. The GAF domain binds specifically cAMP (KD of 0.24µM) and has an important role in the regulation of the DGC activity of the GGDEF domain. Lcd1 DGC activity is negligible in the absence of cAMP and is significantly enhanced in its presence (specific activity of 0.13s-1). The crystal structure of the Lcd1 GAF domain in complex with cAMP provides valuable insights toward explaining its specificity for cAMP and pointing to possible mechanisms by which this cyclic nucleotide regulates the assembly of an active DGC enzyme.


Assuntos
AMP Cíclico/química , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Leptospira interrogans/enzimologia , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
11.
J. Mol. Biol. ; 429(15): 2337-2352, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15109

RESUMO

Leptospira interrogans serovar Copenhageni is a human pathogen that causes leptospirosis, a worldwide zoonosis. The L. interrogans genome codes for a wide array of potential diguanylate cyclase (DGC) enzymes with characteristic GGDEF domains capable of synthesizing the cyclic dinucleotide c-di-GMP, known to regulate transitions between different cellular behavioral states in bacteria. Among such enzymes, LIC13137 (Lcd1), which has an N-terminal cGMP-specific phosphodiesterases, adenylyl cyclases, and FhIA (GAF) domain and a C-terminal GGDEF domain, is notable for having close orthologs present only in pathogenic Leptospira species. Although the function and structure of GGDEF and GAF domains have been studied extensively separately, little is known about enzymes with the GAF-GGDEF architecture. In this report, we address the question of how the GAF domain regulates the DGC activity of Lcd1. The full-length Lcd1 and its GAF domain form dimers in solution. The GAF domain binds specifically cAMP (K-D of 0.24 mu M) and has an important role in the regulation of the DGC activity of the GGDEF domain. Lcd1 DGC activity is negligible in the absence of cAMP and is significantly enhanced in its presence (specific activity of 0.13 s(-1)). The crystal structure of the Lcd1 GAF domain in complex with cAMP provides valuable insights toward explaining its specificity for cAMP and pointing to possible mechanisms by which this cyclic nucleotide regulates the assembly of an active DGC enzyme.

12.
Structure ; 24(10): 1707-1718, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27594685

RESUMO

The type IV secretion system (T4SS) from the phytopathogen Xanthomonas citri (Xac) is a bactericidal nanomachine. The T4SS core complex is a ring composed of multiple copies of VirB7-VirB9-VirB10 subunits. Xac-VirB7 contains a disordered N-terminal tail (VirB7NT) that recognizes VirB9, and a C-terminal domain (VirB7CT) involved in VirB7 self-association. Here, we show that VirB7NT forms a short ß strand upon binding to VirB9 and stabilizes it. A tight interaction between them is essential for T4SS assembly and antibacterial activity. Abolishing VirB7 self-association or deletion of the VirB7 C-terminal domain impairs this antibacterial activity without disturbing T4SS assembly. These findings reveal protein interactions within the core complex that are critical for the stability and activity of a T4SS.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Xanthomonas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Sistemas de Secreção Tipo IV/química
13.
J Biol Chem ; 287(7): 4826-34, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22147698

RESUMO

LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Cálcio/metabolismo , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Leptospira/metabolismo , Lipoproteínas/metabolismo , Plasminogênio/metabolismo , Substituição de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Cátions Bivalentes , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Fibronectinas/química , Fibronectinas/genética , Humanos , Leptospira/química , Leptospira/genética , Lipoproteínas/química , Lipoproteínas/genética , Mutação de Sentido Incorreto , Plasminogênio/química , Plasminogênio/genética , Ligação Proteica , Estabilidade Proteica
14.
Mol Plant Pathol ; 11(5): 663-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20696004

RESUMO

Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Deltaubc13 and Deltamms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.


Assuntos
Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Citrus/metabolismo , Reparo do DNA , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Ubiquitinação , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias/química , Citrus/citologia , Proteínas de Repetições Ricas em Leucina , Lisina/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Efetores Semelhantes a Ativadores de Transcrição
15.
J Mol Biol ; 390(4): 722-36, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19477185

RESUMO

Leptospirosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-A-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL32(21-272)). The LipL32(21-272) monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL32(21-272) is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL32(21-272). Ca(2+) binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca(2+) as no structural or stability perturbations were observed for Mg(2+), Zn(2+), or Cu(2+). Careful examination of the crystallographic structure suggests the locations of putative regions that could mediate Ca(2+) binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and laminin.


Assuntos
Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Ligação ao Cálcio/química , Leptospira/metabolismo , Modelos Moleculares , Antígenos de Bactérias/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cátions Bivalentes , Proteínas da Matriz Extracelular/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Journal of Molecular Biology ; 390(4): 722-736, 2009.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064298

RESUMO

Leptospirosis, a spirochaetal zoonotic disease caused by Leptospira, has been recognized as an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospires, where it accounts for up to 75% of the total outer membrane proteins. It is highly immunogenic, and recent studies have implicated LipL32 as an extracellular matrix binding protein, interacting with collagens, fibronectin, and laminin. In order to better understand the biological role and the structural requirements for the function of this important lipoprotein, we have determined the 2.25-Å-resolution structure of recombinant LipL32 protein corresponding to residues 21-272 of the wild-type protein (LipL3221-272). The LipL3221-272 monomer is made of a jelly-roll fold core from which several peripheral secondary structures protrude. LipL3221-272 is structurally similar to several other jelly-roll proteins, some of which bind calcium ions and extracellular matrix proteins. Indeed, spectroscopic data (circular dichroism, intrinsic tryptophan fluorescence, and extrinsic 1-amino-2-naphthol-4-sulfonic acid fluorescence) confirmed the calcium-binding properties of LipL3221-272. Ca2+ binding resulted in a significant increase in the thermal stability of the protein, and binding was specific for Ca2+ as no structural or stability perturbations were observed for Mg2+, Zn2+, or Cu2+. Careful examination of the crystallographic structure suggests the locations of putative regions that could mediate Ca2+ binding as well as binding to other interacting host proteins, such as collagens, fibronectin, and laminin.


Assuntos
Masculino , Humanos , Animais , Leptospira/enzimologia , Leptospirose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...