Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32601160

RESUMO

Daptomycin-nonsusceptible (DAP-NS) Staphylococcus aureus often exhibits gain-in-function mutations in the mprF gene (involved in positive surface charge maintenance). Standard ß-lactams, although relatively inactive against methicillin-resistant S. aureus (MRSA), may prevent the emergence of mprF mutations and DAP-NS. We determined if ß-lactams might also impact DAP-NS isolates already possessing an mprF mutation to revert them to DAP-susceptible (DAP-S) phenotypes and, if so, whether this is associated with specific penicillin-binding protein (PBP) targeting. This study included 25 DAP-S/DAP-NS isogenic, clinically derived MRSA bloodstream isolates. MICs were performed for DAP, nafcillin (NAF; PBP-promiscuous), cloxacillin (LOX; PBP-1), ceftriaxone (CRO; PBP-2), and cefoxitin (FOX; PBP-4). Three DAP-NS isolates were selected for a 28-day serial passage in subinhibitory ß-lactams. DAP MICs and time-kill assays, host defense peptide (LL-37) susceptibilities, and whole-genome sequencing were performed to associate genetic changes with key phenotypic profiles. Pronounced decreases in baseline MICs were observed for NAF and LOX (but not for CRO or FOX) among DAP-NS versus DAP-S isolates ("seesaw" effect). Prolonged (28-d) ß-lactam passage of three DAP-NS isolates significantly reduced DAP MICs. LOX was most impactful (∼16-fold decrease in DAP MIC; 2 to 0.125 mg/liter). In these DAP-NS isolates with preexisting mprF polymorphisms, accumulation of additional mprF mutations occurred with prolonged LOX exposures. This was associated with enhanced LL-37 killing activity and reduced surface charge (both mprF-dependent phenotypes). ß-lactams that either promiscuously or specifically target PBP-1 have significant DAP "resensitizing" effects against DAP-NS S. aureus strains. This may relate to the acquisition of multiple mprF single nucleotide polymorphism (SNPs), which, in turn, affect cell envelope function and metabolism.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , beta-Lactamas/farmacologia
2.
Curr Microbiol ; 75(8): 1062-1067, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29651552

RESUMO

Among the viridans group streptococci, S. mitis-oralis strains are frequently resistant to multiple ß-lactams and tolerant to vancomycin (VAN). This scenario has led to the proposed clinical use of newer agents, like daptomycin (DAP) for such S. mitis-oralis strains. However, recent recognition of the rapid and durable emergence of high-level DAP-resistance (DAP-R; DAP MICs > 256 µg/ml) induced by DAP exposures in vitro and in vivo has dampened enthusiasm for such approaches. In this study, we evaluated a broad range of DAP combination regimens in vitro for their capacity to prevent emergence of high-level DAP-R in a prototype S. mitis-oralis strain (351) during serial passage experiments, including DAP + either gentamicin (GEN), rifampin (RIF), trimethoprim-sulfamethoxazole (TMP-SMX), imipenem (IMP), ceftaroline (CPT), tedizolid (TDZ), or linezolid (LDZ). In addition, we assessed selected DAP combination regimens for their ability to exert either an early bactericidal impact and/or synergistically kill the S. mitis-oralis study strain. During serial passage, three of the eight antibiotic combinations (DAP + GEN, CPT, or TMP- SMX) exhibited significantly reduced DAP MICs (≈ by 8-40 fold) vs serial exposure in DAP alone (DAP MICs > 256 µg/ml). In addition, combinations of DAP + GEN and DAP + CPT were both bactericidal and synergistic in early time-kill curve interactions.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Streptococcus mitis/efeitos dos fármacos , Streptococcus oralis/efeitos dos fármacos , Cefalosporinas/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana , Gentamicinas/farmacologia , Humanos , Imipenem/farmacologia , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Organofosfatos/farmacologia , Oxazóis/farmacologia , Rifampina/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Ceftarolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...