Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

2.
Nat Commun ; 15(1): 1557, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378672

RESUMO

Active metasurfaces provide the opportunity for fast spatio-temporal control of light. Among various tuning methods, organic electro-optic materials provide some unique advantages due to their fast speed and large nonlinearity, along with the possibility of using fabrication techniques based on infiltration. In this letter, we report a silicon-organic platform where organic electro-optic material is infiltrated into the narrow gaps of slot-mode metasurfaces with high quality factors. The mode confinement into the slot enables the placement of metallic electrodes in close proximity, thus enabling tunability at lower voltages. We demonstrate the maximum tuning sensitivity of 0.16nm/V, the maximum extinction ratio of 38% within ± 17V voltage at telecommunication wavelength. The device has 3dB bandwidth of 3MHz. These results provide a path towards tunable silicon-organic hybrid metasurfaces at CMOS-level voltages.

3.
Nano Lett ; 24(4): 1106-1113, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240528

RESUMO

Most hexagonal boron nitride (hBN) single-photon emitters (SPEs) studied to date suffer from variable emission energy and unpredictable polarization, two crucial obstacles to their application in quantum technologies. Here, we report an SPE in hBN with an energy of 2.2444 ± 0.0013 eV created via carbon implantation that exhibits a small inhomogeneity of the emission energy. Polarization-resolved measurements reveal aligned absorption and emission dipole orientations with a 3-fold distribution, which follows the crystal symmetry. Photoluminescence excitation (PLE) spectroscopy results show the predictability of polarization is associated with a reproducible PLE band, in contrast with the non-reproducible bands found in previous hBN SPE species. Photon correlation measurements are consistent with a three-level model with weak coupling to a shelving state. Our ab initio excited-state calculations shed light on the atomic origin of this SPE defect, which consists of a pair of substitutional carbon atoms located at boron and nitrogen sites separated by a hexagonal unit cell.

4.
Opt Express ; 31(18): 28658-28669, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710682

RESUMO

The ideal imaging system would efficiently capture information about the fundamental properties of light: propagation direction, wavelength, and polarization. Most common imaging systems only map the spatial degrees of freedom of light onto a two-dimensional image sensor, with some wavelength and/or polarization discrimination added at the expense of efficiency. Thus, one of the most intriguing problems in optics is how to group and classify multiple degrees of freedom and map them on a two-dimensional sensor space. Here we demonstrate through simulation that volumetric meta-optics consisting of a highly scattering, inverse-designed medium structured with subwavelength resolution can sort light simultaneously based on direction, wavelength, and polarization. This is done by mapping these properties to a distinct combination of pixels on the image sensor for compressed sensing applications, including wavefront sensing, beam profiling, and next-generation plenoptic sensors.

5.
Nano Lett ; 23(12): 5588-5594, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306317

RESUMO

Nanoelectromechanical devices have been used widely in many applications across photonics, electronics, and acoustics. Their incorporation into metasurface systems could be beneficial in designing new types of active photonic devices. Here, we propose a design of active metasurfaces using a nanoelectromechanical system (NEMS) composed of silicon bars which operates under CMOS-level voltage and achieves phase modulation with wavelength-scale pixel pitch. By introducing a perturbation to the slot mode propagating between the silicon bars, the device operates in a high-Q regime, making the optical mode highly sensitive to mechanical movement. An over 12 dB reflection modulation is observed by full-wave simulation, and over 10% is achieved in the proof-of-concept experiment under CMOS-level voltage. We also simulate a device with 1.8π phase response using a bottom gold mirror. Based on this device, a 3-pixel optical beam deflector is shown to have 75% diffraction efficiency.

6.
Nat Commun ; 14(1): 2768, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179338

RESUMO

Modern imaging systems can be enhanced in efficiency, compactness, and application through the introduction of multilayer nanopatterned structures for manipulation of light based on its fundamental properties. High transmission multispectral imaging is elusive due to the commonplace use of filter arrays which discard most of the incident light. Further, given the challenges of miniaturizing optical systems, most cameras do not leverage the wealth of information in polarization and spatial degrees of freedom. Optical metamaterials can respond to these electromagnetic properties but have been explored primarily in single-layer geometries, limiting their performance and multifunctional capacity. Here we use advanced two-photon lithography to realize multilayer scattering structures that achieve highly nontrivial optical transformations intended to process light just before it reaches a focal plane array. Computationally optimized multispectral and polarimetric sorting devices are fabricated with submicron feature sizes and experimentally validated in the mid-infrared. A final structure shown in simulation redirects light based on its angular momentum. These devices demonstrate that with precise 3-dimensional nanopatterning, one can directly modify the scattering properties of a sensor array to create advanced imaging systems.

7.
Nature ; 617(7960): 271-276, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100918

RESUMO

Quantum emitters coupled to optical resonators are quintessential systems for exploring fundamental phenomena in cavity quantum electrodynamics (cQED)1 and are commonly used in quantum devices acting as qubits, memories and transducers2. Many previous experimental cQED studies have focused on regimes in which a small number of identical emitters interact with a weak external drive3-6, such that the system can be described with simple, effective models. However, the dynamics of a disordered, many-body quantum system subject to a strong drive have not been fully explored, despite its importance and potential in quantum applications7-10. Here we study how a large, inhomogeneously broadened ensemble of solid-state emitters coupled with high cooperativity to a nanophotonic resonator behaves under strong excitation. We discover a sharp, collectively induced transparency (CIT) in the cavity reflection spectrum, resulting from quantum interference and collective response induced by the interplay between driven inhomogeneous emitters and cavity photons. Furthermore, coherent excitation within the CIT window leads to highly nonlinear optical emission, spanning from fast superradiance to slow subradiance11. These phenomena in the many-body cQED regime enable new mechanisms for achieving slow light12 and frequency referencing, pave a way towards solid-state superradiant lasers13 and inform the development of ensemble-based quantum interconnects9,10.

8.
ACS Photonics ; 10(4): 836-844, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096213

RESUMO

Photonic topology optimization is a technique used to find the permittivity distribution of a device that optimizes an electromagnetic figure-of-merit. Two common versions are used: continuous density-based optimizations that optimize a gray scale permittivity defined over a grid, and discrete level-set optimizations that optimize the shape of the material boundary of a device. In this work we present a method for constraining a continuous optimization such that it is guaranteed to converge to a discrete solution. This is done by inserting a constrained suboptimization with low computational overhead cost at each iteration of an overall gradient-based optimization. The technique adds only one hyperparameter with straightforward behavior to control the aggressiveness of binarization. Computational examples are provided to analyze the hyperparameter behavior, show this technique can be used in conjunction with projection filters, show the benefits of using this technique to provide a nearly discrete starting point for subsequent level-set optimization, and show that an additional hyperparameter can be introduced to control the overall material/void fraction. This method excels for problems where the electromagnetic figure-of-merit is majorly affected by the binarization requirement and situations where identifying suitable hyperparameter values becomes challenging with existing methods.

9.
Nat Commun ; 14(1): 1153, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859486

RESUMO

Optical quantum networks can connect distant quantum processors to enable secure quantum communication and distributed quantum computing. Superconducting qubits are a leading technology for quantum information processing but cannot couple to long-distance optical networks without an efficient, coherent, and low noise interface between microwave and optical photons. Here, we demonstrate a microwave-to-optical transducer using an ensemble of erbium ions that is simultaneously coupled to a superconducting microwave resonator and a nanophotonic optical resonator. The coherent atomic transitions of the ions mediate the frequency conversion from microwave photons to optical photons and using photon counting we observed device conversion efficiency approaching 10-7. With pulsed operation at a low duty cycle, the device maintained a spin temperature below 100 mK and microwave resonator heating of less than 0.15 quanta.

10.
Adv Mater ; 35(13): e2209153, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649979

RESUMO

Nanoarchitected materials represent a class of structural meta-materials that utilze nanoscale features to achieve unconventional material properties such as ultralow density and high energy absorption. A dearth of fabrication methods capable of producing architected materials with sub-micrometer resolution over large areas in a scalable manner exists. A fabrication technique is presented that employs holographic patterns generated by laser exposure of phase metasurface masks in negative-tone photoresists to produce 30-40 µm-thick nanoarchitected sheets with 2.1 × 2.4 cm2 lateral dimensions and ≈500 nm-wide struts organized in layered 3D brick-and-mortar-like patterns to result in ≈50-70% porosity. Nanoindentation arrays over the entire sample area reveal the out-of-plane elastic modulus to vary between 300 MPa and 4 GPa, with irrecoverable post-elastic material deformation commencing via individual nanostrut buckling, densification within layers, shearing along perturbation perimeter, and tensile cracking. Laser induced particle impact tests (LIPIT) indicate specific inelastic energy dissipation of 0.51-2.61 MJ kg-1 , which is comparable to other high impact energy absorbing composites and nanomaterials, such as Kevlar/poly(vinyl butyral) (PVB) composite, polystyrene, and pyrolized carbon nanolattices with 23% relative density. These results demonstrate that holographic lithography offers a promising platform for scalable manufacturing of nanoarchitected materials with impact resistant capabilities.

11.
Nat Commun ; 13(1): 5811, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192401

RESUMO

Spatial light modulators (SLMs) play essential roles in various free-space optical technologies, offering spatio-temporal control of amplitude, phase, or polarization of light. Beyond conventional SLMs based on liquid crystals or microelectromechanical systems, active metasurfaces are considered as promising SLM platforms because they could simultaneously provide high-speed and small pixel size. However, the active metasurfaces reported so far have achieved either limited phase modulation or low efficiency. Here, we propose nano-electromechanically tunable asymmetric dielectric metasurfaces as a platform for reflective SLMs. Exploiting the strong asymmetric radiation of perturbed high-order Mie resonances, the metasurfaces experimentally achieve a phase-shift close to 290∘, over 50% reflectivity, and a wavelength-scale pixel size. Electrical control of diffraction patterns is also achieved by displacing the Mie resonators using nano-electro-mechanical forces. This work paves the ways for future exploration of the asymmetric metasurfaces and for their application to the next-generation SLMs.

12.
Nature ; 602(7897): 408-413, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173343

RESUMO

Solid-state nuclear spins surrounding individual, optically addressable qubits1,2 are a crucial resource for quantum networks3-6, computation7-11 and simulation12. Although hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence13, developing coherent quantum systems in nuclear-spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage14; however, using them as a resource for single-spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear-spin-rich yttrium orthovanadate crystal15, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically engineered spin-exchange interaction, we polarize this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb-51V Bell states. Unlike conventional, disordered nuclear-spin-based quantum memories16-24, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb3+ qubits. Our approach provides a framework for utilizing the complex structure of dense nuclear spin baths, paving the way towards building large-scale quantum networks using single rare-earth ion qubits15,25-28.

13.
Sci Rep ; 11(1): 11145, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045469

RESUMO

Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multi-functional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, a device based on rotating squares, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6-11.6 GHz) in an anechoic chamber.

14.
Nano Lett ; 21(7): 2817-2823, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33544608

RESUMO

Planar all-dielectric photonic crystals or metasurfaces host various resonant eigenmodes including leaky guided mode resonances (GMR) and bound states in the continuum (BIC). Engineering these resonant modes can provide new opportunities for diverse applications. Particularly, electrical control of the resonances will boost development of the applications by making them tunable. Here, we experimentally demonstrate nano-electromechanical tuning of both the GMR and the quasi-BIC modes in the telecom wavelength range. With electrostatic forces induced by a few volts, the devices achieve spectral shifts over 5 nm, absolute intensity modulation over 40%, and modulation speed exceeding 10 kHz. We also show that the interference between two resonances enables the enhancement of the phase response when two modes are overlapped in spectrum. A phase shift of 144° is experimentally observed with a bias of 4 V. Our work suggests a direct route toward optical modulators through the engineering of GMRs and quasi-BIC resonances.

15.
ACS Photonics ; 8(10): 2980-2986, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35989884

RESUMO

Active control of strong chiroptical responses in metasurfaces can offer new opportunities for optical polarization engineering. Plasmonic active chiral metasurfaces have been investigated before, but their tunable chiroptical responses is limited due to inherent loss of plasmonic resonances, thus stimulating research in low loss active dielectric chiral metasurfaces. Among diverse tuning methods, electrically tunable dielectric chiral metasurfaces are promising thanks to their potential for on-chip integration. Here, we experimentally demonstrate nano-electromechanically tunable dielectric chiral metasurfaces with reflective circular dichroism (CD). We show a difference between absolute reflection under circulary polarized incident light with orthogonal polarization of over 0.85 in simulation and over 0.45 experimentally. The devices enable continuous control of CD by induced electrostatic forces from 0.45 to 0.01 with an electrical bias of 3V. This work highlights the potential of nano-electromechanically tunable metasurfaces for scalable optical polarization modulators.

16.
Nat Commun ; 11(1): 3266, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601274

RESUMO

Optical networks that distribute entanglement among various quantum systems will form a powerful framework for quantum science but are yet to interface with leading quantum hardware such as superconducting qubits. Consequently, these systems remain isolated because microwave links at room temperature are noisy and lossy. Building long distance connectivity requires interfaces that map quantum information between microwave and optical fields. While preliminary microwave-to-optical transducers have been realized, developing efficient, low-noise devices that match superconducting qubit frequencies (gigahertz) and bandwidths (10 kilohertz - 1 megahertz) remains a challenge. Here we demonstrate a proof-of-concept on-chip transducer using trivalent ytterbium-171 ions in yttrium orthovanadate coupled to a nanophotonic waveguide and a microwave transmission line. The device's miniaturization, material, and zero-magnetic-field operation are important advances for rare-earth ion magneto-optical devices. Further integration with high quality factor microwave and optical resonators will enable efficient transduction and create opportunities toward multi-platform quantum networks.

17.
Sci Rep ; 10(1): 7124, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346135

RESUMO

One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optimal for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.

18.
Nature ; 580(7802): 201-204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269343

RESUMO

Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication1,2. Building quantum networks requires scalable quantum light-matter interfaces1 based on atoms3, ions4 or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide6-10, have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction11-15, but only recently have single rare-earth ions been isolated16,17 and coupled to nanocavities18,19. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single 171Yb3+ ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.

19.
Proc Natl Acad Sci U S A ; 116(43): 21379-21384, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591229

RESUMO

Fast, large-scale, and robust 3-dimensional (3D) fabrication techniques for patterning a variety of structures with submicrometer resolution are important in many areas of science and technology such as photonics, electronics, and mechanics with a wide range of applications from tissue engineering to nanoarchitected materials. From several promising 3D manufacturing techniques for realizing different classes of structures suitable for various applications, interference lithography with diffractive masks stands out for its potential to fabricate complex structures at fast speeds. However, the interference lithography masks demonstrated generally suffer from limitations in terms of the patterns that can be generated. To overcome some of these limitations, here we propose the metasurface-mask-assisted 3D nanofabrication which provides great freedom in patterning various periodic structures. To showcase the versatility of this platform, we design metasurface masks that generate exotic periodic lattices like gyroid, rotated cubic, and diamond structures. As a proof of concept, we experimentally demonstrate a diffractive element that can generate the diamond lattice.

20.
Phys Rev Lett ; 121(18): 183603, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444379

RESUMO

We demonstrate optical probing of spectrally resolved single Nd^{3+} rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...