Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(14): 9392-9403, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37497378

RESUMO

Photoredox catalysis (PRC) has gained enormous and wide-ranging interest in recent years but has also been subject to significant mechanistic uncertainty, even controversy. To provide a method by which the missing understanding can begin to be filled in, we demonstrate herein that it is possible to isolate as authentic materials the one-electron reduction products of representative PRC catalysts (PCs). Specifically, KC8 reduction of both 9,10-dicyanoanthracene and a naphthalene monoamide derivative in the presence of a cryptand provides convenient access to the corresponding [K(crypt)+][PC·-] salts as clean materials that can be fully characterized by techniques including EPR and XRD. Because PC·- states are key intermediates in PRC reactions, such isolation allows for highly controlled study of these anions' specific reactivity and hence their mechanistic roles. As a demonstration of this principle, we show that these salts can be used to conveniently interrogate the mechanisms of recent, high-profile "conPET" and "e-PRC" reactions, which are currently the subject of both significant interest and acute controversy. Using very simple experiments, we are able to provide striking insights into these reactions' underlying mechanisms and to observe surprising levels of hidden complexity that would otherwise have been very challenging to identify and that emphasize the care and control that are needed when interrogating and interpreting PRC mechanisms. These studies provide a foundation for the study of a far broader range of questions around conPET, e-PRC, and other PRC reaction mechanisms in the future, using the same strategy of PC·- isolation.

2.
Inorg Chem ; 60(3): 1998-2008, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476136

RESUMO

The cyclometalated platinum(II) complexes [PtMe(C∧N)(L)] [1PS: C∧N = 2-phenylpyridinate (ppy), L = SMe2; 1BS: C∧N = benzo[h]quinolate (bhq), L = SMe2; 1PP: C∧N = ppy, L = PPh3; and 1BP: C∧N = bhq, L = PPh3] containing two different cyclometalated ligands and two different ancillary ligands have been investigated in the reaction with CX3CO2H (X = F or H). When L = SMe2, the Pt-Me bond rather than the Pt-C bond of the cycloplatinated complex is cleaved to give the complexes [Pt(C∧N)(CX3CO2)(SMe2)]. When L = PPh3, the selectivity of the reaction is reversed. In the reaction of [PtMe(C∧N)(PPh3)] with CF3CO2H, the Pt-C∧N bond is cleaved rather than the Pt-Me bond. The latter reaction gave [PtMe(κ1N-Hppy)(PPh3)(CF3CO2)] as an equilibrium mixture of two isomers. For L = PPh3, no reaction was observed with CH3CO2H. The reasons for this difference in selectivity for complexes 1 are computationally discussed based on the energy barrier needed for the protonolysis of the Pt-Csp3 bond versus the Pt-Csp2 bond. Two pathways including the direct one-step acid attack at the Pt-C bond (SE2) and stepwise oxidative-addition on the Pt(II) center followed by reductive elimination [SE(ox)] are proposed. A detailed density functional theory (DFT) study of these protonations along with experimental UV-vis kinetics suggests that a one-step electrophilic attack (SE2) at the Pt-C bond is the most likely mechanism for complexes 1, and changing the nature of the ancillary ligand can influence the selectivity in the Pt-C bond cleavage. The effect of the nature of the acid and cyclometalated ligand (C∧N) is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...