Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960352

RESUMO

This review delves into the intricate relationship between excess folate (vitamin B9) intake, especially its synthetic form, namely, folic acid, and its implications on health and disease. While folate plays a pivotal role in the one-carbon cycle, which is essential for DNA synthesis, repair, and methylation, concerns arise about its excessive intake. The literature underscores potential deleterious effects, such as an increased risk of carcinogenesis; disruption in DNA methylation; and impacts on embryogenesis, pregnancy outcomes, neurodevelopment, and disease risk. Notably, these consequences stretch beyond the immediate effects, potentially influencing future generations through epigenetic reprogramming. The molecular mechanisms underlying these effects were examined, including altered one-carbon metabolism, the accumulation of unmetabolized folic acid, vitamin-B12-dependent mechanisms, altered methylation patterns, and interactions with critical receptors and signaling pathways. Furthermore, differences in the effects and mechanisms mediated by folic acid compared with natural folate are highlighted. Given the widespread folic acid supplementation, it is imperative to further research its optimal intake levels and the molecular pathways impacted by its excessive intake, ensuring the health and well-being of the global population.


Assuntos
Deficiência de Ácido Fólico , Ácido Fólico , Gravidez , Feminino , Humanos , Ácido Fólico/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Vitamina B 12 , Metilação de DNA
2.
Nutrients ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235597

RESUMO

Mandatory fortification of food with synthetic folic acid (FA) was instituted in 1998 to reduce the incidence of neural tube defects. Adequate folate status is correlated with numerous health benefits. However, elevated consumption of FA is controversially associated with deleterious effects on health. We previously reported that excess FA mimicked folate depletion in a lymphoblastoid cell line. To explore the impact of FA intake from fortified food, we conducted an observational human study on 33 healthy participants aged 18-40 not taking any supplements. Food intake, anthropomorphic measurements, and blood samples were collected and analyzed. Our results show that individuals belonging to the highest tertile of folic acid intake, as well as ones with the highest folic acid to total folate intake ratio (FAR), display a significantly greater incidence of lymphocyte genomic damage. A decrease in global DNA methylation is observed in the highest tertile of FAR compared to the lowest (p = 0.055). A downward trend in the overall gene expression of select DNA repair and one carbon cycle genes (MGMT, MLH1, UNG, MTHFR, MTR) is noted with increased folate status and FA intake. These results provide supporting evidence that high consumption of FA from fortified foods can precipitate genomic instability in peripheral lymphocyte in vivo.


Assuntos
Ácido Fólico , Defeitos do Tubo Neural , Adulto , Suplementos Nutricionais , Alimentos Fortificados , Instabilidade Genômica , Humanos , Linfócitos
3.
Curr Issues Mol Biol ; 44(4): 1452-1462, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35723355

RESUMO

Food fortification with synthetic folic acid (FA), along with supplementation, results in a marked increase in the population total of serum folates and unmetabolized folic acid (UMFA). Despite the success in reducing neural tube defects at birth in the intended target population (women of childbearing age), the potential deleterious effects of chronically high levels of UMFA in susceptible segments of the population require further investigation. In this study, we examine the effects of FA concentrations, ranging from depletion to supraphysiological levels, on markers of proliferation, DNA methylation, and DNA damage and repair in a human lymphoblastoid cell line (LCL). We note that both low and high levels of FA similarly impact global DNA methylation, cytome biomarkers measured through the CBMN assay, DNA damage induced by oxidative stress, and DNA base excision repair gene expression.

4.
Exp Gerontol ; 150: 111387, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957263

RESUMO

Researchers studying the effect of folate restriction on rodents have resorted to the use of the antibiotic succinylsulfathiazole (SST) in the folate depleted diet to induce a folate deficient status. SST has been used extensively in rodent studies since the 1940s. Its localized effect on the gut bacteria as well as its effectiveness in reducing folate producing species is well documented. The possible overlap between the pathways affected by folate depletion and SST could potentially produce a confounding variable in such studies. In our novel study, we analyzed the effect of SST on folate levels in c57Bl/6 male mice fed folate supplemented and deficient diets. We did not observe any significant difference on growth and weight gain at 21 weeks. SST did not significantly affect folate levels in the plasma, liver and colon tissues; however, it did alter energy metabolism and expression of key genes in the mTOR signaling pathway in the liver. This research sheds light on a possible confounding element when using SST to study folate depletion due to the potential overlap with multiple critical pathways such as mTOR. SUMMARY: The antibiotic succinylsulfathiazole (SST) is used to reduce folate producing bacteria in rodent folate depletion studies. SST can modulate critical energy and nutrient sensing pathways converging onto mTOR signaling, and potentially confounding cancer studies.


Assuntos
Deficiência de Ácido Fólico , Ácido Fólico , Animais , Dieta , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sulfatiazóis , Serina-Treonina Quinases TOR/metabolismo
5.
Nutrients ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35010891

RESUMO

Diet plays a crucial role in the development of colorectal cancer (CRC). Of particular importance, folate, present in foods and supplements, is a crucial modulator of CRC risk. The role of folate, and, specifically, the synthetic variant, folic acid, in the primary prevention of CRC has not been fully elucidated. Animal studies varied considerably in the timing, duration, and supplementation of folates, leading to equivocal results. Our work attempts to isolate these variables to ascertain the role of folic acid in CRC initiation, as we previously demonstrated that folate restriction conferred protection against CRC initiation in a ß-pol haploinsufficient mouse model. Here we demonstrated that prior adaptation to folate restriction altered the response to carcinogen exposure in wild-type C57BL/6 mice. Mice adapted to folate restriction for 8 weeks were protected from CRC initiation compared to mice placed on folate restriction for 1 week, irrespective of antibiotic supplementation. Through analyses of mTOR signaling, DNA methyltransferase, and DNA repair, we have identified factors that may play a critical role in the differential responses to folate restriction. Furthermore, the timing and duration of folate restriction altered these pathways differently in the absence of carcinogenic insult. These results represent novel findings, as we were able to show that, in the same model and under controlled conditions, folate restriction produced contrasting results depending on the timing and duration of the intervention.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Dieta , Ácido Fólico/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Reparo do DNA , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...