Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(32): 78507-78520, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270757

RESUMO

Copper (Cu), an essential micronutrient, can generate reactive oxygen species (ROS) at its supra-optimal level in living cells as a transition metal, thus producing oxidative stress in plants. Therefore, protecting plants from Cu-induced oxidative stress via the exogenous application of chemical substances, particularly L-glutamic acid (L-Glu), could be a viable strategy for mitigating the toxicity of Cu. The aim of our present study was to investigate how ʟ-Glu protects lentil seedlings from oxidative stress produced by toxic Cu and allows them to survive under Cu toxicity. The results exhibited that when lentil seedlings were exposed to excessive Cu, their growth was inhibited and their biomass decreased due to an increase in Cu accumulation and translocation to the root, shoot, and leaves. Exposure to toxic Cu also depleted photosynthetic pigments, imbalanced water content, and other essential nutrients, increased oxidative stress, and reduced enzymatic and non-enzymatic antioxidants. However, pre-treatment of ʟ-Glu improved the phenotypic appearance of lentil seedlings, which was distinctly evidenced by higher biomass production, maintenance of water balance, and an increase in photosynthetic pigments when exposed to toxic Cu. ʟ-Glu also protected the seedlings from Cu-induced oxidative stress by reducing the oxidative stress marker, specifically by the efficient action of enzymatic and non-enzymatic antioxidants, particularly ascorbate, catalase, monodehydroascorbate, and glutathione peroxidase and maintaining redox balance. Furthermore, ʟ-Glu assisted in maintaining the homeostasis of Cu and other nutrient in the roots, shoots, and leaves of lentil. Collectively, our results provide evidence of the mechanism of ʟ-Glu-mediated protective role in lentil against Cu toxicity, thus proposed as a potential chemical for managing Cu toxicity not only in lentil but also other plants.


Assuntos
Antioxidantes , Lens (Planta) , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cobre/toxicidade , Lens (Planta)/metabolismo , Ácido Glutâmico , Estresse Oxidativo , Plântula/metabolismo , Nutrientes , Homeostase , Água , Peróxido de Hidrogênio
2.
Biomolecules ; 11(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923634

RESUMO

Salt stress greatly disturbs the growth, morpho-physiological, and biochemical performance of plants. However, different physiological processes and acclimation mechanisms can be induced under stress, while some of them can be modulated by the appropriate chemical stimulus. The objective of this study was to evaluate the impact of exogenous pretreatment with 10 mM l-glutamic acid (l-Glu) on the physiological and biochemical parameters of lentil (Lensculinaris Medik.) under 110 mM NaCl stress. Salt stress inhibited the growth and reduced the photosynthetic pigment (chlorophylls and carotenoids) level, water content, and survival of lentil seedlings during recovery from the stress. Salt stress also induced oxidative damage, as indicated by higher hydrogen peroxide and malonaldehyde contents and electrolyte leakage, by interrupting the antioxidant defense system and promoting the accumulation of toxic levels of Na+. However, l-Glu pretreatment mitigated the salt-induced damage in lentil seedlings by reducing the accumulation of Na+, maintaining ion homeostasis, and increasing the activities of antioxidant enzymes (catalase and ascorbate peroxidase). As a result, salt-induced oxidative damage was reduced, seedling growth and photosynthetic pigment contents were enhanced, and the survival rate of the lentil seedlings was improved in response to salt stress, indicating an ameliorative role for l-Glu in lentil seedling growth under salt stress.


Assuntos
Ácido Glutâmico/farmacologia , Lens (Planta)/metabolismo , Tolerância ao Sal , Peróxido de Hidrogênio/metabolismo , Lens (Planta)/efeitos dos fármacos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...