Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 326: 138461, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948259

RESUMO

A novel tortuous brick-and-mortar structure utilizing intercalation of polyvinyl alcohol (PVA) on sulfonated graphene oxide (SGO) membranes was specifically tailored for brine treatment by pervaporation to ensure excessive resistance to silica scaling and organic fouling, as well as ultrafast water transport without compromising salt rejection. The synthesized SGO membrane showed a smoother surface morphology, improved zeta potential, and a higher hydration capacity than the graphene oxide (GO) membrane. Further intercalation of PVA through glutaraldehyde (GA) crosslinking, confirmed by Fourier transform infrared spectroscopy and X-ray diffraction analysis, conferred increased cohesiveness, and the SGO-PVA-GA membrane was therefore able to withstand ultrasonication tests without any erosion of the coating layer. According to a pervaporative desalination test, the SGO-PVA-GA membrane exhibited 62 kg m-2 h-1 of permeate flux, with an extraordinary salt rejection of 99.99% for a 10 wt% NaCl feed solution at 65 °C. The 72 h organic fouling, silica scaling, and combined fouling and scaling tests proved that the SGO-PVA-GA membrane sustains a stable flux with less scaling and fouling than the GO-PVA-GA membrane, attributable to dense surface negative charges and great hydration capacities caused by sulfonic acid. Thus, the SGO-PVA-GA membrane offers superlative advantages for long-term brine treatment by pervaporation, related to its ability to withstand silica scaling and organic fouling.


Assuntos
Grafite , Dióxido de Silício , Membranas Artificiais , Grafite/química , Álcool de Polivinil , Cloreto de Sódio
2.
Sci Total Environ ; 876: 162695, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898544

RESUMO

This study investigated the influence of pH (4-10) on the treatment of water-extractable organic matter (WEOM), and the associated disinfection by-products (DBPs) formation potential (FP), during the pre-ozonation/nanofiltration treatment process. At alkaline pH (9-10), a rapid decline in water flux (> 50 %) and higher membrane rejection was observed, as a consequence of the increased electrostatic repulsion forces between the membrane surface and organic species. Parallel factor analysis (PARAFAC) modeling and size exclusion chromatography (SEC) provides detailed insights into the WEOM compositional behavior at different pH levels. Ozonation at higher pH significantly reduced the apparent molecular weight (MW) of WEOM in the 4000-7000 Da range by transforming the large MW (humic-like) substances into small hydrophilic fractions. Fluorescence components C1 (humic-like) and C2 (fulvic-like) exhibited a predominant increase/decrease in concentration for all pH conditions during pre-ozonation and nanofiltration treatment process, however, the C3 (protein-like) component was found highly associated with the reversible and irreversible membrane foulants. The ratio C1/C2 provided a strong correlation with the formation of total trihalomethanes (THMs) (R2 = 0.9277) and total haloacetic acids (HAAs) (R2 = 0.5796). The formation potential of THMs increased, and HAAs decreased, with the increase of feed water pH. Ozonation markedly reduced the formation of THMs by up to 40 % at higher pH levels, but increased the formation of brominated-HAAs by shifting the formation potential of DBPs towards brominated precursors.

3.
J Colloid Interface Sci ; 629(Pt A): 355-367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36084443

RESUMO

High-efficiency separation of photogenerated charges and molecular oxygen activation is very important for photocatalytic removal of organic pollutants. However, the current understanding of the effect mechanism of metal substitution for the separation of photo-generated charges and molecular oxygen activation is still poor. Herein, efficient manganese (Mn)-doped BiOBr hollow microspheres synthesis, systematic characterizations, and theoretical calculation discovered that Mn-doping could not only induce produce oxygen vacancies (OVs), but also can act as active sites for catalytic reactions. The induced production of OVs and Mn2+/Mn3+ by Mn optimal doping introduced into BiOBr can synergistic promote the separation of photogenerated charges and molecular oxygen activation leads to significantly enhances degradation of crystal violet (CV). Upon analysis, Mn-doping introducing unsaturated d-orbital with bridging O2- formation π-donation accelerated the separation of photo-generated charges. Meanwhile, the larger overlap of Mn-3d orbitals with O2-2p orbitals forms a π-donation bond with charge transfer from metal to O2 leading to the oxygen-oxygen (OO) bond length and molecular oxygen activation. Finally, we proposed a possible mechanism to explain the highly efficient photocatalytic degradation performance of the acquired photocatalysts. This study provides not only a novel strategy for the rational design of highly active photocatalysts, but also in-depth insights into the separation of photo-generated charges and molecular oxygen activation.


Assuntos
Poluentes Ambientais , Manganês , Manganês/química , Microesferas , Violeta Genciana , Oxigênio/química
4.
J Hazard Mater ; 435: 128990, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523091

RESUMO

This paper proposes a Fenton-like reaction activated by nanoscale zero-valent iron (nZVI) for aqueous monomethylmercury (MMHg) decomposition. Reacting 10 µg L-1 MMHg with 280 mg L-1 nZVI removed 70% of the aqueous MMHg within 1 min, and its main product was aqueous Hg(II). Within 1 - 5 min, the aqueous Hg(II) decreased while the aqueous, solid, and gas-phase Hg(0) increased with 92% MMHg removal. Then, a secondary Hg(II) reduction to solid Hg(0) was prevalent within 30 - 60 min, with 98% MMHg removal. Diverse-shaped magnetite crystals were observed on the surface of nZVI in 2 h, suggesting that Fe(II) oxidation on magnetite can be a source of electrons for secondary Hg(II) reduction. When FeCl2 and H2O2 were added to the MMHg solution without nZVI, 99% of the MMHg changed to Hg(II) within 1 min. The reactive oxygen species (ROS) produced by the Fenton-like reaction accounted for the rapid demethylation but not for the further reduction of Hg(II) to Hg(0). The results suggest a three-step pathway of MMHg decomposition by nZVI: (1) rapid MMHg demethylation by ROS; (2) rapid Hg(II) reduction by Fe(0); and (3) slow Hg(II) reduction by magnetite on the nZVI surface.


Assuntos
Mercúrio , Poluentes Químicos da Água , Desmetilação , Óxido Ferroso-Férrico , Peróxido de Hidrogênio , Ferro/química , Espécies Reativas de Oxigênio , Água , Poluentes Químicos da Água/química
5.
Environ Sci Pollut Res Int ; 28(29): 39840-39852, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33765261

RESUMO

This study assessed the critical soil characteristics affecting mercury (Hg) bioavailability to the earthworm Eisenia fetida using the diffusive gradient in thin films (DGT) method. The soil samples were collected from a tributary of the Hyeongsan River contaminated with industrial waste and landfill leachates called Gumu Creek. The Hg concentration in the soil had a range of 0.33-170 µg g-1 (average 33 ± 56 µg g-1), and the Hg concentration of earthworms incubated in the soils was 0.83-11 µg g-1 (average 2.9 ± 3.2 µg g-1). When correlation analysis was used to detect the key variables among the soil properties related to Hg accumulation in the soils, earthworms, and resins, the water-holding capacity, which is covaried with the organic matter content, was determined to be a primary factor in increasing Hg accumulation in the soils, earthworms, and resins. However, the experimentally determined earthworm bioaccumulation factor and the DGT accumulation factor were negatively affected by the water-holding capacity. Therefore, the water-holding capacity played a dual role in the Gumu Creek deposits: increasing the soil Hg concentration and decreasing Hg bioavailability and leachability. Further, the DGT-Hg flux was positively correlated with the Hg concentration in earthworms (r = 0.93). Although the earthworm accumulation of Hg is not processed by passive diffusion, this study proves that the DGT method is promising for predicting soil Hg bioavailability to the earthworm E. fetida, and the water-holding capacity simultaneously regulates Hg availability to the DGT and the earthworms.


Assuntos
Mercúrio , Oligoquetos , Poluentes do Solo , Animais , Disponibilidade Biológica , Mercúrio/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...