Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Brain Commun ; 6(2): fcae108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646145

RESUMO

In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.

2.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37847564

RESUMO

A paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes. This agent significantly reduced mammary tumor size in orthotopic xenograft assays and improved survival in an intracardiac model of multiorgan site metastases. Metixene further extended survival in mice bearing intracranial xenografts and in an intracarotid mouse model of multiple brain metastases. Functional analysis revealed that metixene induced incomplete autophagy through N-Myc downstream regulated 1 (NDRG1) phosphorylation, thereby leading to caspase-mediated apoptosis in both primary and brain-metastatic cells, regardless of cancer subtype or origin. CRISPR/Cas9 KO of NDRG1 led to autophagy completion and reversal of the metixene apoptotic effect. Metixene is a promising therapeutic agent against metastatic brain cancer, with minimal reported side effects in humans, which merits consideration for clinical translation.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Proliferação de Células , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Autofagia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Artigo em Inglês | MEDLINE | ID: mdl-37713414

RESUMO

BACKGROUND: Calcaneal apophysitis is an overuse injury in pediatric patients that causes heel pain and reduction in function. The aim of this study is to explore this condition and offer medical insight into its presentation and symptomatology, along with current treatment options. METHODS: We explored PubMed/Medline for studies involving calcaneal apophysitis in pediatric patients. The search included all articles published from database inception until June 1, 2021. We only included articles published in English. Clinical information and demographics extracted from the reported studies were analyzed and assessed. RESULTS: Only 28 studies met our criteria, with a total of 1,362 cases. Of the cases reported, 973 affected boys (71.4%). Presentation was bilateral in 589 cases (43.2%) and unilateral in 433 cases (31.8%). Radiographic imaging was used for the diagnosis of 358 cases (26.3%). All reported treatment modalities were conservative, and these included physical therapy and rest, kinesiotherapy and taping, and orthotic devices. A total of 733 cases (53.7%) reported improved outcomes,32 cases (2.3%) reported no improvement, and the remainder of cases did not report prognostic outcomes (44%). CONCLUSIONS: Calcaneal apophysitis is an overuse disease commonly found in the pediatric population. Educating parents and coaches with regard to its symptomatology, etiology, and treatment is essential to diagnose the condition earlier and provide better outcomes.


Assuntos
Calcâneo , Doenças do Pé , Masculino , Humanos , Criança , Calcâneo/diagnóstico por imagem , Doenças do Pé/epidemiologia , Dor/etiologia , Aparelhos Ortopédicos , Radiografia
4.
J Neurooncol ; 164(1): 11-29, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458855

RESUMO

INTRODUCTION: Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION: Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION: In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.


Assuntos
Senescência Celular , Glioma , Humanos , Carcinogênese , Microambiente Tumoral
5.
Trends Mol Med ; 29(9): 740-752, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349248

RESUMO

The global aging population has led to an increase in geriatric diseases, including adult degenerative scoliosis (ADS). ADS is a spinal deformity affecting adults, particularly females. It is characterized by asymmetric intervertebral disc and facet joint degeneration, leading to spinal imbalance that can result in severe pain and neurological deficits, thus significantly reducing the quality of life. Despite improved management, molecular mechanisms driving ADS remain unclear. Current literature primarily comprises epidemiological and clinical studies. Here, we investigate the molecular mechanisms underlying ADS, with a focus on angiogenesis, inflammation, extracellular matrix remodeling, osteoporosis, sarcopenia, and biomechanical stress. We discuss current limitations and challenges in the field and highlight potential translational applications that may arise with a better understanding of these mechanisms.


Assuntos
Disco Intervertebral , Escoliose , Feminino , Humanos , Adulto , Idoso , Escoliose/genética , Qualidade de Vida , Vértebras Lombares , Envelhecimento
6.
Clin Med Res ; 21(1): 49-52, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37130790

RESUMO

Ross Syndrome is a rare disorder characterized by tonic pupils, hyporeflexia, and abnormal segmental sweating. The pathophysiology of the disease remains unclear, with either hypohidrosis or hyperhidrosis reported in individual patients. We present the case of a man, aged 57 years, who presented with hyperhidrosis in his right extremities, anhidrosis in the left extremities, and changes in his pupils. The disease was not associated with markers of autoimmune disease, which supports recent research findings on the role of neurodegeneration. The patient's son was exhibiting similar symptoms, which implicates genetic inheritance in the process. A multidisciplinary approach is crucial for the diagnosis and ultimate management of patients with Ross Syndrome.


Assuntos
Hiperidrose , Hipo-Hidrose , Pupila Tônica , Masculino , Humanos , Hipo-Hidrose/complicações , Hipo-Hidrose/diagnóstico , Síndrome , Hiperidrose/complicações , Hiperidrose/diagnóstico , Pupila Tônica/diagnóstico , Pupila Tônica/complicações , Reflexo Anormal/fisiologia
7.
Avicenna J Med ; 13(1): 60-64, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36969348

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has underscored social and racial discrimination in global health, showing that health equity is still a goal to be achieved. Understanding the impact of COVID-19 on public health potential is vital to present a fair opportunity for people of different backgrounds to be as healthy as possible. As such, this communication discusses the emerging health disparities in light of the COVID-19 pandemic and analyzes their implications. Original research, effective health communication, and promotion strategies ought to be leveraged to step closer toward national and international health equity.

8.
Nat Commun ; 14(1): 1566, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949040

RESUMO

Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Quinase 1 do Ponto de Checagem , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Imunidade , Microambiente Tumoral
9.
NPJ Precis Oncol ; 7(1): 17, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792722

RESUMO

Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.

10.
Mol Cancer Res ; 21(5): 389-396, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652630

RESUMO

Immunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease. Extensive efforts have been directed at understanding how tumor cells survive and propagate within the unique microenvironment of the central nervous system (CNS). Cancer genetic aberrations and metabolic abnormalities provoke a state of persistent endoplasmic reticulum (ER) stress that in turn promotes tumor growth, invasion, therapeutic resistance, and the dynamic reprogramming of the infiltrating immune cells. Consequently, targeting ER stress is a potential therapeutic approach. In this work, we provide an overview of how ER stress response is advantageous to brain tumor development, discuss the significance of ER stress in governing antitumor immunity, and put forth therapeutic strategies of regulating ER stress to augment the effect of immunotherapy for primary CNS tumors.


Assuntos
Neoplasias Encefálicas , Encéfalo , Humanos , Neoplasias Encefálicas/genética , Oncogenes , Imunoterapia , Estresse do Retículo Endoplasmático , Microambiente Tumoral
11.
Comput Biol Med ; 152: 106286, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502696

RESUMO

Virtual reality surgical simulators have facilitated surgical education by providing a safe training environment. Electroencephalography (EEG) has been employed to assess neuroelectric activity during surgical performance. Machine learning (ML) has been applied to analyze EEG data split into frequency bands. Although EEG is widely used in fields requiring expert performance, it has yet been used to classify surgical expertise. Thus, the goals of this study were to (a) develop an ML model to accurately differentiate skilled and less-skilled performance using EEG data recorded during a simulated surgery, (b) explore the relative importance of each EEG bandwidth to expertise, and (c) analyze differences in EEG band powers between skilled and less-skilled individuals. We hypothesized that EEG recordings during a virtual reality surgery task would accurately predict the expertise level of the participant. Twenty-one participants performed three simulated brain tumor resection procedures on the NeuroVR™ platform (CAE Healthcare, Montreal, Canada) while EEG data was recorded. Participants were divided into 2 groups. The skilled group was composed of five neurosurgeons and five senior neurosurgical residents (PGY4-6), and the less-skilled group was composed of six junior residents (PGY1-3) and five medical students. A total of 13 metrics from EEG frequency bands and ratios (e.g., alpha, theta/beta ratio) were generated. Seven ML model types were trained using EEG activity to differentiate between skilled and less-skilled groups. The artificial neural network achieved the highest testing accuracy of 100% (AUROC = 1.0). Model interpretation via Shapley analysis identified low alpha (8-10 Hz) as the most important metric for classifying expertise. Skilled surgeons displayed higher (p = 0.044) low-alpha than the less-skilled group. Furthermore, skilled surgeons displayed significantly lower TBR (p = 0.048) and significantly higher beta (13-30 Hz, p = 0.049), beta 1 (15-18 Hz, p = 0.014), and beta 2 (19-22 Hz, p = 0.015), thus establishing these metrics as important markers of expertise. ACGME CORE COMPETENCIES: Practice-Based Learning and Improvement.


Assuntos
Inteligência Artificial , Realidade Virtual , Humanos , Aprendizado de Máquina , Eletroencefalografia , Redes Neurais de Computação
12.
Neurosurg Rev ; 46(1): 19, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529827

RESUMO

Augmented and virtual reality (AR, VR) are becoming promising tools in neurosurgery. AR and VR can reduce challenges associated with conventional approaches via the simulation and mimicry of specific environments of choice for surgeons. Awake craniotomy (AC) enables the resection of lesions from eloquent brain areas while monitoring higher cortical and subcortical functions. Evidence suggests that both surgeons and patients benefit from the various applications of AR and VR in AC. This paper investigates the application of AR and VR in AC and assesses its prospective utility in neurosurgery. A systematic review of the literature was performed using PubMed, Scopus, and Web of Science databases in accordance with the PRISMA guidelines. Our search results yielded 220 articles. A total of six articles consisting of 118 patients have been included in this review. VR was used in four papers, and the other two used AR. Tumour was the most common pathology in 108 patients, followed by vascular lesions in eight patients. VR was used for intraoperative mapping of language, vision, and social cognition, while AR was incorporated in preoperative training of white matter dissection and intraoperative visualisation and navigation. Overall, patients and surgeons were satisfied with the applications of AR and VR in their cases. AR and VR can be safely incorporated during AC to supplement, augment, or even replace conventional approaches in neurosurgery. Future investigations are required to assess the feasibility of AR and VR in various phases of AC.


Assuntos
Realidade Aumentada , Realidade Virtual , Humanos , Vigília , Craniotomia , Procedimentos Neurocirúrgicos/métodos
13.
Arthrosc Sports Med Rehabil ; 4(1): e189-e198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35141551

RESUMO

Strength and power constitute vital predictors for an individual's quality of life and athletic performance. Measurement of these two parameters is very important in the world of sports science and medicine and necessitates a high level of accuracy and reliability. Several tests are used to measure strength and power, including the isometric maximal voluntary contraction test, the 1-repetition maximum test, and the Wingate test, as well as other tests that target upper and lower limbs. The unique characteristics present in each of these tests entail a subsequently unique mode of application during the process of rehabilitation. This helps athletic trainers and medical personnel evaluate recovery and decide on a potential return to sport. A comprehensive holistic approach that includes multiple testing, psychosocial assessment, and a gradual return to activity is best to achieve promising outcomes and preinjury athletic levels. LEVEL OF EVIDENCE: V, expert opinion.

14.
Int J Cancer ; 151(2): 167-180, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35179776

RESUMO

Malignant brain tumors, such as glioblastoma multiforme (GBM) and brain metastases, continue to be an unmet medical challenge. Despite advances in cancer diagnostics and therapeutics, tumor cell colonization in the central nervous system renders most treatment options ineffective. This is primarily due to the selective permeability of the blood-brain barrier (BBB), which hinders the crossing of targeting agents into the brain. As such, repositioning medications that demonstrate anticancer effects and possess the ability to cross the BBB can be a promising option. Antidepressants, which are BBB-permeable, have been reported to exhibit cytotoxicity against tumor cells. Autophagy, specifically, has been identified as one of the common key mediators of antidepressant's antitumor effects. In this work, we provide a comprehensive overview of US Food and Drug Administration (FDA)-approved antidepressants with reported cytotoxic activities in different tumor models, where autophagy dysregulation was demonstrated to play the main part. As such, imipramine, maprotiline, fluoxetine and escitalopram were shown to induce autophagy, whereas nortriptyline, clomipramine and paroxetine were identified as autophagy inhibitors. Sertraline and desipramine, depending on the neoplastic context, were demonstrated to either induce or inhibit autophagy. Collectively, these medications were associated with favorable therapeutic outcomes in a variety of cancer cell models, including brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antidepressivos/uso terapêutico , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Reposicionamento de Medicamentos , Glioblastoma/patologia , Humanos
15.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969858

RESUMO

Brain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM). HER2-targeting agents, such as the monoclonal antibodies trastuzumab and pertuzumab, improved outcomes in patients with breast cancer and extracranial metastases. However, continued BCBM progression in breast cancer patients highlighted the need for novel and effective targeted therapies against intracranial metastases. In this study, we engineered the highly migratory and brain tumor tropic human neural stem cells (NSCs) LM008 to continuously secrete high amounts of functional, stable, full-length antibodies against HER2 (anti-HER2Ab) without compromising the stemness of LM008 cells. The secreted anti-HER2Ab impaired tumor cell proliferation in vitro in HER2+ BCBM cells by inhibiting the PI3K-Akt signaling pathway and resulted in a significant benefit when injected in intracranial xenograft models. In addition, dual HER2 blockade using anti-HER2Ab LM008 NSCs and the tyrosine kinase inhibitor tucatinib significantly improved the survival of mice in a clinically relevant model of multiple HER2+ BCBM. These findings provide compelling evidence for the use of HER2Ab-secreting LM008 NSCs in combination with tucatinib as a promising therapeutic regimen for patients with HER2+ BCBM.


Assuntos
Antineoplásicos Imunológicos/metabolismo , Neoplasias Encefálicas , Neoplasias Experimentais , Células-Tronco Neurais , Oxazóis/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Med Res ; 19(3): 132-137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531270

RESUMO

Sever's disease is an underreported prevalent pediatric condition that causes heel pain in children worldwide. It is often described as an overuse injury that can present with either unilateral or bilateral heel pain. Even though the exact mechanism of injury is unknown, it is often thought it involves repetitive stress and pressure on the calcaneal growth plate. Diagnosing Sever's disease mainly relies on a thorough clinical investigation and physical examination, with a positive squeeze test usually sufficient to establish diagnosis. Nevertheless, radiographic imaging can help exclude other differential diagnoses. Therapeutic options of Sever's disease are mostly conservative, and these include rest, physical therapy, kinesiotherapy, and orthoses. Educating parents and coaches on the symptomatology and presentation of Sever's disease is pivotal for the establishment of efficient preventive interventions and earlier diagnoses. This study presents a case of a pediatric patient with Sever's disease and offers medical insight into the diagnostic, clinical, pathologic, and therapeutic characteristics of this condition, in light of the current existing literature.


Assuntos
Calcâneo , Criança , , Humanos , Dor , Exame Físico
17.
Lancet Oncol ; 22(8): 1103-1114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214495

RESUMO

BACKGROUND: Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma. METHODS: This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design. Patients with newly diagnosed, histologically confirmed, high-grade gliomas (WHO grade III or IV) were recruited. After neurosurgical resection, NSC-CRAd-S-pk7 was injected into the walls of the resection cavity. The first patient cohort received a dose starting at 6·25 × 1010 viral particles administered by 5·00 × 107 NSCs, the second cohort a dose of 1·25 × 1011 viral particles administered by 1·00 × 108 NSCs, and the third cohort a dose of 1·875 × 1011 viral particles administered by 1·50 × 108 NSCs. No further dose escalation was planned. Within 10-14 days, treatment with temozolomide and radiotherapy was initiated. Primary endpoints were safety and toxicity profile and the maximum tolerated dose for a future phase 2 trial. All analyses were done in all patients who were included in the trial and received the study treatment and were not excluded from the study. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT03072134. FINDINGS: Between April 24, 2017, and Nov 13, 2019, 12 patients with newly diagnosed, malignant gliomas were recruited and included in the safety analysis. Histopathological evaluation identified 11 (92%) of 12 patients with glioblastoma and one (8%) of 12 patients with anaplastic astrocytoma. The median follow-up was 18 months (IQR 14-22). One patient receiving 1·50 × 108 NSCs loading 1·875 × 1011 viral particles developed viral meningitis (grade 3) due to the inadvertent injection of NSC-CRAd-S-pk7 into the lateral ventricle. Otherwise, treatment was safe as no formal dose-limiting toxicity was reached, so 1·50 × 108 NSCs loading 1·875 × 1011 viral particles was recommended as a phase 2 trial dose. There were no treatment-related deaths. The median progression-free survival was 9·1 months (95% CI 8·5-not reached) and median overall survival was 18·4 months (15·7-not reached). INTERPRETATION: NSC-CRAd-S-pk7 treatment was feasible and safe. Our immunological and histopathological findings support continued investigation of NSC-CRAd-S-pk7 in a phase 2/3 clinical trial. FUNDING: US National Institutes of Health.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Adenoviridae , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vírus Oncolíticos
18.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298694

RESUMO

Autophagy is a catabolic process that allows cells to scavenge damaged organelles and produces energy to maintain cellular homeostasis. It is also an effective defense method for cells, which allows them to identify an internalized pathogen and destroy it through the fusion of the autophagosome and lysosomes. Recent reports have demonstrated that various chemotherapeutic agents and viral gene therapeutic vehicles provide therapeutic advantages for patients with glioblastoma as monotherapy or in combination with standards of care. Despite nonstop efforts to develop effective antiglioma therapeutics, tumor-induced autophagy in some studies manifests tumor resistance and glioma progression. Here, we explore the functional link between autophagy regulation mediated by oncolytic viruses and discuss how intracellular interactions control autophagic signaling in glioblastoma. Autophagy induced by oncolytic viruses plays a dual role in cell death and survival. On the one hand, autophagy stimulation has mostly led to an increase in cytotoxicity mediated by the oncolytic virus, but, on the other hand, autophagy is also activated as a cell defense mechanism against intracellular pathogens and modulates antiviral activity through the induction of ER stress and unfolded protein response (UPR) signaling. Despite the fact that the moment of switch between autophagic prosurvival and prodeath modes remains to be known, in the context of oncolytic virotherapy, cytotoxic autophagy is a crucial mechanism of cancer cell death.

20.
Clin Med Res ; 19(2): 90-93, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985978

RESUMO

McArdle disease, also known as glycogen storage disease type V, is an autosomal recessive disease due to the absence of myophosphorylase activity, leading to the complete disruption of glycogen breakdown in muscles. We present a rare case of a Caucasian male, aged 26 years, who developed rhabdomyolysis-induced acute renal failure and uremic encephalopathy. Neurological examination and histopathological studies supported the diagnosis of McArdle disease. The severity of his symptoms necessitated urgent hemodialysis, upon which the patient reported improvement in status. Acute renal failure in McArdle disease usually resolves with supportive treatment and maintenance of regular physical activity. Nevertheless, in more severe cases, intensive care with urgent hemodialysis may be needed. A multidisciplinary approach is necessary for the adequate management of similar cases.


Assuntos
Injúria Renal Aguda , Doença de Depósito de Glicogênio Tipo V , Rabdomiólise , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/terapia , Humanos , Masculino , Diálise Renal , Rabdomiólise/diagnóstico , Rabdomiólise/etiologia , Rabdomiólise/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...