Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5912-5927, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742632

RESUMO

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Mutação , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
2.
Mitochondrion ; 71: 93-103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343711

RESUMO

The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.


Assuntos
NAD , Pirofosfatases , Humanos , Hidrólise , Mitocôndrias/metabolismo , Pirofosfatases/genética , Pirofosfatases/química , Pirofosfatases/metabolismo
3.
Methods Mol Biol ; 2615: 121-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807789

RESUMO

Mitochondrial transcription factor A (TFAM) plays a key role in the organization and compaction of the mitochondrial genome. However, there are only a few simple and accessible methods available to observe and quantify TFAM-dependent DNA compaction. Acoustic Force Spectroscopy (AFS) is a straightforward single-molecule force spectroscopy technique. It allows one to track many individual protein-DNA complexes in parallel and to quantify their mechanical properties. Total internal reflection fluorescence (TIRF) microscopy is a high-throughput single-molecule technique that permits the real-time visualization of the dynamics of TFAM on DNA, parameters inaccessible with classical biochemistry tools. Here we describe, in detail, how to set up, perform, and analyze AFS and TIRF measurements to study DNA compaction by TFAM.


Assuntos
DNA , Fenômenos Mecânicos , DNA/química , Proteínas Mitocondriais/genética , Microscopia de Fluorescência/métodos , Análise Espectral/métodos , Acústica , DNA Mitocondrial/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166467, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716868

RESUMO

Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression, and packaging of mitochondrial DNA (mtDNA). Recently, a pathogenic homozygous variant in TFAM (P178L) has been associated with a severe mtDNA depletion syndrome leading to neonatal liver failure and early death. We have performed a biochemical characterization of the TFAM variant P178L in order to understand the molecular basis for the pathogenicity of this mutation. We observe no effects on DNA binding, and compaction of DNA is only mildly affected by the P178L amino acid change. Instead, the mutation severely impairs mtDNA transcription initiation at the mitochondrial heavy and light strand promoters. Molecular modeling suggests that the P178L mutation affects promoter sequence recognition and the interaction between TFAM and the tether helix of POLRMT, thus explaining transcription initiation deficiency.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195723

RESUMO

As with all organisms that must organize and condense their DNA to fit within the limited volume of a cell or a nucleus, mammalian mitochondrial DNA (mtDNA) is packaged into nucleoprotein structures called nucleoids. In this study, we first introduce the general modes of DNA compaction, especially the role of the nucleoid-associated proteins (NAPs) that structure the bacterial chromosome. We then present the mitochondrial nucleoid and the main factors responsible for packaging of mtDNA: ARS- (autonomously replicating sequence-) binding factor 2 protein (Abf2p) in yeast and mitochondrial transcription factor A (TFAM) in mammals. We summarize the single-molecule manipulation experiments on mtDNA compaction and visualization of mitochondrial nucleoids that have led to our current knowledge on mtDNA compaction. Lastly, we discuss the possible regulatory role of DNA packaging by TFAM in DNA transactions such as mtDNA replication and transcription.


Assuntos
DNA Mitocondrial/genética , Mamíferos/genética , Animais , Replicação do DNA/genética , DNA Mitocondrial/química , Humanos , Proteínas Mitocondriais/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética
7.
Hum Mol Genet ; 28(7): 1090-1099, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496414

RESUMO

TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.


Assuntos
DNA Helicases/genética , DNA Helicases/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/ultraestrutura , Oftalmoplegia Externa Progressiva Crônica/genética , Sequência de Aminoácidos , DNA Primase , DNA Mitocondrial/genética , DNA Mitocondrial/fisiologia , Humanos , Microscopia Eletrônica/métodos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação/genética , Domínios Proteicos/genética
8.
Sci Rep ; 8(1): 5368, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599527

RESUMO

EXD2 is a recently identified exonuclease that has been implicated in nuclear double-strand break repair. Given our long standing interest in mitochondrial DNA maintenance and indications that EXD2 could also be a mitochondrial protein we sought to determine its cellular localization and possible mitochondrial associated functions. Our results show that EXD2 indeed shows mitochondrial localization, but, surprisingly, is found predominantly associated with the mitochondrial outer-membrane. Gradient purified nuclei show only the faintest hint of EXD2 presence while overexpression of the predicted full-length protein shows exclusive mitochondrial localization. Importantly, induction of double-strand DNA breaks via X-irradiation or Zeocin treatment does not support the notion that EXD2 re-locates to the nucleus following double-strand breaks and thus is unlikely to have a direct role in nuclear DNA repair. Knockdown or overexpression of EXD2 affects the cellular distribution of mitochondria. These results suggest that the reported defects in nuclear DNA repair following EXD2 depletion are likely an indirect consequence of altered mitochondrial dynamics and/or function.


Assuntos
Reparo do DNA , Exonucleases/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Exonucleases/antagonistas & inibidores , Exonucleases/genética , Humanos , Microscopia de Fluorescência , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
9.
PLoS One ; 12(4): e0176795, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453550

RESUMO

Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Mitocondrial , Southern Blotting , Western Blotting , Ciclo-Oxigenase 1/genética , Reparo do DNA , Endonucleases/metabolismo , Exonucleases/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Cinética , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência , Transfecção
10.
DNA Repair (Amst) ; 48: 8-16, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793508

RESUMO

BACKGROUND: Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS: Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS: PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Macrófagos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Animais , Bleomicina/farmacologia , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
11.
Cell Rep ; 8(1): 66-74, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24981867

RESUMO

The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , DNA Mitocondrial/química , DNA Viral/química , DNA Viral/genética , Humanos , Ligação Proteica , Multimerização Proteica , Fatores de Transcrição/química
12.
Biochem Biophys Res Commun ; 443(1): 7-12, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24211586

RESUMO

UBTD1 is a previously uncharacterized ubiquitin-like (UbL) domain containing protein with high homology to the mitochondrial Dc-UbP/UBTD2 protein. Here we show that UBTD1 and UBTD2 belong to a family of proteins that is conserved through evolution and found in metazoa, funghi, and plants. To gain further insight into the function of UBTD1, we screened for interacting proteins. In a yeast-2-hybrid (Y2H) screen, we identified several proteins involved in the ubiquitylation pathway, including the UBE2D family of E2 ubiquitin conjugating enzymes. An affinity capture screen for UBTD1 interacting proteins in whole cell extracts also identified members of the UBE2D family. Biochemical characterization of recombinant UBTD1 and UBE2D demonstrated that the two proteins form a stable, stoichiometric complex that can be purified to near homogeneity. We discuss the implications of these findings in light of the ubiquitin proteasome system (UPS).


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Humanos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Ubiquitinas/classificação , Ubiquitinas/genética
13.
Nat Methods ; 10(9): 910-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23934077

RESUMO

Dense coverage of DNA by proteins is a ubiquitous feature of cellular processes such as DNA organization, replication and repair. We present a single-molecule approach capable of visualizing individual DNA-binding proteins on densely covered DNA and in the presence of high protein concentrations. Our approach combines optical tweezers with multicolor confocal and stimulated emission depletion (STED) fluorescence microscopy. Proteins on DNA are visualized at a resolution of 50 nm, a sixfold resolution improvement over that of confocal microscopy. High temporal resolution (<50 ms) is ensured by fast one-dimensional beam scanning. Individual trajectories of proteins translocating on DNA can thus be distinguished and tracked with high precision. We demonstrate our multimodal approach by visualizing the assembly of dense nucleoprotein filaments with unprecedented spatial resolution in real time. Experimental access to the force-dependent kinetics and motility of DNA-associating proteins at biologically relevant protein densities is essential for linking idealized in vitro experiments with the in vivo situation.


Assuntos
Proteínas de Ligação a DNA/análise , DNA/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Pinças Ópticas , DNA/análise , Proteínas de Ligação a DNA/metabolismo , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Microscopia Confocal/métodos , Nanotecnologia/métodos , Nucleoproteínas/análise , Nucleoproteínas/metabolismo
14.
Biopolymers ; 99(9): 611-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23444293

RESUMO

Essential genomic transactions such as DNA-damage repair and DNA replication take place on single-stranded DNA (ssDNA) or require specific single-stranded/double-stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single-molecule studies of DNA-protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single-molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force-induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force-induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA.


Assuntos
DNA de Cadeia Simples , Pinças Ópticas , DNA/química , Proteínas de Ligação a DNA/química , Desnaturação de Ácido Nucleico , Ligação Proteica
15.
Nat Commun ; 3: 1013, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22910359

RESUMO

Mitochondria organize their genome in protein-DNA complexes called nucleoids. The mitochondrial transcription factor A (TFAM), a protein that regulates mitochondrial transcription, is abundant in these nucleoids. TFAM is believed to be essential for mitochondrial DNA compaction, yet the exact mechanism has not been resolved. Here we use a combination of single-molecule manipulation and fluorescence microscopy to show the nonspecific DNA-binding dynamics and compaction by TFAM. We observe that single TFAM proteins diffuse extensively over DNA (sliding) and, by collisions, form patches on DNA in a cooperative manner. Moreover, we demonstrate that TFAM induces compaction by changing the flexibility of the DNA, which can be explained by local denaturation of the DNA (melting). Both sliding of TFAM and DNA melting are also necessary characteristics for effective, specific transcription regulation by TFAM. This apparent connection between transcription and DNA organization clarifies how TFAM can accomplish two complementary roles in the mitochondrial nucleoid at the same time.


Assuntos
DNA Mitocondrial/química , Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/química , Fatores de Transcrição/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Desnaturação de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 39(21): 9238-49, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21840902

RESUMO

Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Circular/metabolismo , DNA/biossíntese , Proteínas Mitocondriais/metabolismo , DNA Polimerase gama , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/enzimologia , Nucleotídeos/metabolismo , Temperatura , Moldes Genéticos
17.
Hum Mol Genet ; 20(6): 1212-23, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21228000

RESUMO

A large number of mutations in the gene encoding the catalytic subunit of mitochondrial DNA polymerase γ (POLγA) cause human disease. The Y955C mutation is common and leads to a dominant disease with progressive external ophthalmoplegia and other symptoms. The biochemical effect of the Y955C mutation has been extensively studied and it has been reported to lower enzyme processivity due to decreased capacity to utilize dNTPs. However, it is unclear why this biochemical defect leads to a dominant disease. Consistent with previous reports, we show here that the POLγA:Y955C enzyme only synthesizes short DNA products at dNTP concentrations that are sufficient for proper function of wild-type POLγA. In addition, we find that this phenotype is overcome by increasing the dNTP concentration, e.g. dATP. At low dATP concentrations, the POLγA:Y955C enzyme stalls at dATP insertion sites and instead enters a polymerase/exonuclease idling mode. The POLγA:Y955C enzyme will compete with wild-type POLγA for primer utilization, and this will result in a heterogeneous population of short and long DNA replication products. In addition, there is a possibility that POLγA:Y955C is recruited to nicks of mtDNA and there enters an idling mode preventing ligation. Our results provide a novel explanation for the dominant mtDNA replication phenotypes seen in patients harboring the Y955C mutation, including the existence of site-specific stalling. Our data may also explain why mutations that disturb dATP pools can be especially deleterious for mtDNA synthesis.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação de Sentido Incorreto , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Linhagem Celular , DNA Polimerase gama , Replicação do DNA , DNA Mitocondrial/genética , Humanos , Oftalmoplegia Externa Progressiva Crônica/genética
18.
Methods Enzymol ; 475: 427-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20627167

RESUMO

The technically challenging field of single-molecule biophysics has established itself in the last decade by granting access to detailed information about the fate of individual biomolecules, unattainable in traditional biochemical assays. The appeal of single-molecule methods lies in the directness of the information obtained from individual biomolecules. Technological improvements in single-molecule methods have made it possible to combine optical tweezers, fluorescence microscopy, and microfluidic flow systems. Such a combination of techniques has opened new possibilities to study complex biochemical reactions on the single-molecule level. In this chapter, we provide general considerations for the development of a combined optical trapping, fluorescence microscopy, and microfluidics instrument, along with methods to solve technical issues that are critical for designing successful experiments. Finally, we present several experiments to illustrate the power of this combination of techniques.


Assuntos
DNA/química , DNA/metabolismo , Microfluídica , Microscopia de Fluorescência , Pinças Ópticas , Proteínas/química , Proteínas/metabolismo , Ligação Proteica
19.
Proc Natl Acad Sci U S A ; 106(43): 18231-6, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19841258

RESUMO

Single-molecule manipulation studies have revealed that double-stranded DNA undergoes a structural transition when subjected to tension. At forces that depend on the attachment geometry of the DNA (65 pN or 110 pN), it elongates approximately 1.7-fold and its elastic properties change dramatically. The nature of this overstretched DNA has been under debate. In one model, the DNA cooperatively unwinds, while base pairing remains intact. In a competing model, the hydrogen bonds between base pairs break and two single DNA strands are formed, comparable to thermal DNA melting. Here, we resolve the structural basis of DNA overstretching using a combination of fluorescence microscopy, optical tweezers, and microfluidics. In DNA molecules undergoing the transition, we visualize double- and single-stranded segments using specific fluorescent labels. Our data directly demonstrate that overstretching comprises a gradual conversion from double-stranded to single-stranded DNA, irrespective of the attachment geometry. We found that these conversions favorably initiate from nicks or free DNA ends. These discontinuities in the phosphodiester backbone serve as energetically favorable nucleation points for melting. When both DNA strands are intact and no nicks or free ends are present, the overstretching force increases from 65 to 110 pN and melting initiates throughout the molecule, comparable to thermal melting. These results provide unique insights in the thermodynamics of DNA and DNA-protein interactions.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Temperatura de Transição , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Desnaturação de Ácido Nucleico , Pinças Ópticas
20.
Biochim Biophys Acta ; 1792(2): 132-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19084593

RESUMO

TWINKLE is a DNA helicase needed for mitochondrial DNA replication. In lower eukaryotes the protein also harbors a primase activity, which is lost from TWINKLE encoded by mammalian cells. Mutations in TWINKLE underlie autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with multiple deletions in the mtDNA. Four different adPEO-causing mutations (W315L, K319T, R334Q, and P335L) are located in the N-terminal domain of TWINKLE. The mutations cause a dramatic decrease in ATPase activity, which is partially overcome in the presence of single-stranded DNA. The mutated proteins have defects in DNA helicase activity and cannot support normal levels of DNA replication. To explain the phenotypes, we use a molecular model of TWINKLE based on sequence similarities with the phage T7 gene 4 protein. The four adPEO-causing mutations are located in a region required to bind single-stranded DNA. These mutations may therefore impair an essential element of the catalytic cycle in hexameric helicases, i.e. the interplay between single-stranded DNA binding and ATP hydrolysis.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Sequência de Aminoácidos , DNA Helicases/genética , DNA Helicases/isolamento & purificação , Replicação do DNA/genética , DNA Mitocondrial/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...