Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 1): 32-45, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748896

RESUMO

Two examples of contact twins in pyrite from Peru are described. The first one, from Pasto Bueno ore deposit, shows the pyritohedron {120} as principal form, accompanied by the {111} octahedron and {100} cube as secondary forms, giving a lenticular aspect. (111) is the composition plane, and the twin operation is any one of the three binary axes ⟨110⟩ within this plane. The second one (unknown ore deposit) presents two forms, the octahedron {111} and the pyritohedron {120}; the two crystals in the twin are elongated along [101] and [011], respectively, producing a V profile. It is a reflection twin where the twin plane (110) coincides with the composition plane. These twins are by merohedry. Another contact twin is known in the literature, reported by Gaubert [Bull. Soc. Fr. Minéral. Cristallogr. (1928), 51, 211-212] who described it as a spinel twin, i.e. a reflection twin with twin and composition plane (111); here it is shown that it is actually a rotation twin in which the twin operation is a 180° rotation about any of the three equivalent directions ⟨211⟩, contained in the (111) composition plane. The occurrence of these twins as well as the doubtfulness of the spinel twin in pyrite shows a direct relationship with the structural interpretation based on the pseudo-symmetry of the crystallographic orbits.

2.
J Hazard Mater ; 295: 193-200, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25919502

RESUMO

Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.


Assuntos
Nanopartículas/química , Selênio/química , Esgotos/química , Nanopartículas/análise , Selênio/análise
3.
Environ Sci Technol ; 49(3): 1713-20, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25536371

RESUMO

The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.


Assuntos
Nanopartículas/química , Polímeros/química , Selênio/química , Biodegradação Ambiental , Carboidratos/análise , Espaço Extracelular/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Nanopartículas/microbiologia , Polímeros/análise , Proteínas/análise , Esgotos/química , Esgotos/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
4.
Environ Sci Technol ; 45(3): 1067-73, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21182285

RESUMO

In this study we evaluate the potential of anaerobic granular sludge as an inoculum for the bioremediation of selenium-contaminated waters using species-specific analytical methods. Solid species formed by microbial reduction were investigated using X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K-edge. Furthermore, dissolved selenium species were specifically determined by ion chromatography (IC) and solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS). Least-squares linear combination of the XANES spectra for samples incubated with the highest selenate/selenite concentrations (10(-3) M) show the predominance of elemental selenium and a Se(-I) selenide, such as ferroselite, the thermodynamically most stable iron selenide. In contrast, elemental selenium and Se(-II) selenides are the main species detected at the lower selenate/selenite concentrations. In each repeated fed batch incubation, most aqueous selenite anions were converted into solid selenium species, regardless of the type of electron donor used (acetate or H(2)/CO(2)) and the selenium concentration applied. On the other hand, at higher concentrations of selenate (10(-4) and 10(-3) M), significant amounts of the oxyanion remained unconverted after consecutive incubations. SPME-GC-MS demonstrated selenium alkylation with both electron donors investigated, as dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). Selenite was even more alkylated in the presence of H(2)/CO(2) (maximum 2156 µg of Se/L of DMSe + DMDSe) as compared to acetate (maximum 50 µg of Se/L). In contrast, selenate was less alkylated using both electron donors (maximum 166 and 3 µg of Se/L, respectively). The high alkylation potential for selenite limits its bioremediation in selenium laden waters involving H(2)/CO(2) as the electron donor despite the fact that nontoxic elemental selenium and thermodynamically stable metal selenide species are formed.


Assuntos
Cromatografia por Troca Iônica , Cromatografia Gasosa-Espectrometria de Massas , Selênio/química , Microextração em Fase Sólida , Poluentes Químicos da Água/química , Espectroscopia por Absorção de Raios X , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos , Selênio/análise , Selênio/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
5.
Langmuir ; 25(10): 5574-85, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19371051

RESUMO

Sorption of Zn(II)(aq) on hematite (alpha-Fe2O3) nanoparticles (average diameter 10.5 nm) and microparticles (average diameter 550 nm) has been examined over a range of total Zn(II)(aq) concentrations (0.4-7.6 mM) using Zn K-edge EXAFS spectroscopy and selective chemical extractions. When ZnCl2 aqueous solutions were reacted with hematite nanoparticles (HN) at pH 5.5, Zn(II) formed a mixture of four- and six-coordinated surface complexes [Zn(O,OH)4 and Zn(O,OH)6] with an average Zn-O distance of 2.04+/-0.02 A at low sorption densities (Gammaor=3.38 micromol/m2), we observed the formation of Zn(O,OH)6 surface complexes, with an average Zn-O distance of 2.09+/-0.02 A, a Zn-Zn distance of 3.16+/-0.02 A, and a linear multiple-scattering feature at 6.12+/-0.06 A. Formation of a Zn(OH)2(am) precipitate for the higher sorption density samples (Gamma>or=3.38 micromol/m2) is suggested on the basis of comparison of the EXAFS spectra of the sorption samples with that of synthetic Zn(OH)2am. In contrast, EXAFS spectra of Zn(II) sorbed on hematite microparticles (HM) under similar experimental conditions showed no evidence of surface precipitates even at the same total [Zn(II)(aq)] that resulted in precipitate formation in the nanoparticle system. Instead, Zn(O,OH)6 octahedra (d(Zn-O)=2.10+/-0.02 A) were found to sorb dominantly in an inner-sphere, bidentate, edge-sharing fashion on Fe3+(O,OH)6 octahedra at hematite microparticle surfaces, based on an EXAFS-derived Zn-Fe3+ distance of 3.44+/-0.02 A. CaCl2 selective extraction experiments showed that 10-15% of the sorbed Zn(II) was released from Zn/HN sorption samples, and about 40% was released from a Zn/HM sorption sample. These fractions of Zn(II) are interpreted as weakly bound, outer-sphere adsorption complexes. The combined EXAFS and selective chemical extraction results indicate that (1) both Zn(O,OH)4 and Zn(O,OH)6 adsorption complexes are present in the Zn/HN system, whereas dominantly Zn(O,OH)6 adsorption complexes are present in the Zn/HM system; (2) a higher proportion of outer-sphere Zn(II) surface complexes is present in the Zn/HM system; and (3) Zn-containing precipitates similar to Zn(OH)2(am) form in the nanoparticle system but not in the microparticle system, suggesting a difference in reactivity of the hematite nanoparticles vs microparticles with respect to Zn(II)(aq).

6.
Langmuir ; 25(10): 5586-93, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19326938

RESUMO

Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)<4 mM, whereas it is 50-100% higher for the Zn(II)/Ox/HN system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]tot<4 mM. In the Zn(II)/Ox/HM ternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

7.
Environ Sci Technol ; 42(20): 7587-93, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18983079

RESUMO

Wet chemical methods such as sequential extraction procedures are commonly used to assess selenium fractionation in anoxic environments, allowing an estimation of the mobility and bioavailability of selenium. However, the interpretation can be biased by unselective extraction of targeted species and artifacts introduced during the extraction. Here, the selectivity of the single extraction steps to gain reliable selenium speciation information are scrutinized for the first time by direct, nondestructive X-ray absorption near edge structure (XANES) spectroscopy at the selenium K-edge. The sequential extraction procedures seriously overestimated the elemental selenium fraction, as major parts (58%) of the total selenium were present as metal selenides and organic selenium compounds, although extracted in the elemental fraction. Spectral fitting of the XANES spectra by the least-squares linear combinations utilizing a large set of model compounds, including previously neglected Se(-I) selenides, showed a novel degree of complexity in the speciation of selenium treating anaerobic biofilms, with up to 4 modeled selenium species contributing to the speciation, i.e., different elemental, organic, and metal-bound selenium species. Furthermore, a short exposure (10 min) to ambient air during the sequential extraction procedure induced the oxidation of organic selenium compounds, revealing the fragility of selenium speciation in anaerobic biofilms.


Assuntos
Biofilmes , Selênio/isolamento & purificação , Ar , Anaerobiose , Reatores Biológicos , Calibragem , Fracionamento Químico , Oxirredução , Compostos de Selênio/química , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...