Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(31): 28165-28184, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576633

RESUMO

Glioma is a malignant form of brain cancer that is challenging to treat due to the progressive growth of glial cells. To target overexpressed folate receptors in glioma brain tumors, we designed and investigated doxorubicin-gefitinib nanoparticles (Dox-Gefit NPs) and folate conjugated Dox-Gefit NPs (Dox-Gefit NPs-F). Dox-Gefit NPs and Dox-Gefit NPs-F were characterized by multiple techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1H NMR), and transmission electron microscopy (TEM). In vitro release profiles were measured at both physiological and tumor endosomal pH. The cytotoxicity of the Dox-Gefit NP formulations was measured against C6 and U87 glioma cell lines. A hemolysis assay was performed to investigate biocompatibility of the formulations, and distribution of the drugs in different organs was also estimated. The Dox-Gefit NPs and Dox-Gefit NPs-F were 109.45 ± 7.26 and 120.35 ± 3.65 nm in size and had surface charges of -18.0 ± 3.27 and -20.0 ± 8.23 mV, respectively. Dox-Gefit NPs and Dox-Gefit NPs-F significantly reduced the growth of U87 cells, with IC50 values of 9.9 and 3.2 µM. Similarly, growth of the C6 cell line was significantly reduced, with IC50 values of 8.43 and 3.31 µM after a 24 h incubation, in Dox-Gefit NPs and Dox-Gefit NPs-F, respectively. The percentage drug releases of Dox and Gefit from Dox-Gefit NPs at pH 7.4 were 60.87 ± 0.59 and 68.23 ± 0.1%, respectively. Similarly, at pH 5.4, Dox and Gefit releases from NPs were 70.87 ± 0.28 and 69.24 ± 0.12%, respectively. Biodistribution analysis revealed that more Dox and Gefit were present in the brain than in the other organs. The functionalized NPs inhibited the growth of glioma cells due to high drug concentrations in the brain. Folate conjugated NPs of Dox-Gefit could be a treatment option in glioma therapy.

2.
ACS Omega ; 8(31): 28233-28248, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576685

RESUMO

Nanoemulgel (NEG) pharmaceutical formulations are gaining popularity because of their ability to serve both as a nanoemulsion and as a gel. These products are well-known for their ease of use, spreadability, controlled release, and ability to hydrate dry skin. Natural essential oils have been shown to promote the cutaneous permeability of topical formulations, enhancing medication safety and efficacy. Herein, we developed NEG for the enhanced permeation of ketoconazole against candidiasis using clove oil (clove-oil-NEG) or eucalyptus oil (eucalyptus-oil-NEG), using the gelling agents carbopol 943 and hydroxypropyl methylcellulose (HPMC). We tested various excipients to increase the solubility of ketoconazole and formulate a nanoemulsion (NE). We measured the NE droplet particle size, shape, entrapment efficiency, and drug release. Furthermore, the physicochemical properties of the optimized nanoemulsion formulation were characterized by techniques such as Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis. The NEs were loaded into gels to form NEGs. NEGs were characterized for drug content, homogeneity, rheology, spreadability, and antifungal activity against Candida albicans, both in vitro and in vivo. Optimized ketoconazole NEG preparations consisted of either 15% clove oil or 20% eucalyptus oil. Droplet sizes in the optimized NEs were <100 nm, and the polydispersity indexes were 0.24 and 0.26. The percentages of ketoconazole released after 24 h from the clove-oil-NEG and eucalyptus-oil-NEGs were 91 ± 4.5 and 89 ± 7%, respectively. Scanning electron microscopy (SEM) showed that the NEGs had a smooth, uniform, and consistent shape and internal structural organization. The drug contents in the clove-oil-NEG and eucalyptus-oil-NEG were 98.5 ± 2.2 and 98.8 ± 3.4%, respectively. Permeation values of ketoconazole from clove-oil-NEG and eucalyptus-oil-NEG were 117 ± 7 and 108.34 ± 6 µg cm-2, respectively. The ketoconazole NEG formulations also had higher levels of fungal growth inhibition than a marketed formulation. Finally, in vivo studies showed that the NEGs do not irritate the skin. Ketoconazole NEG with either 15% clove oil or 20% eucalyptus oil is stable with better efficacy than ketoconazole alone due to excellent dispersion, drug dissolution, and permeability and thus might be recommended for the effective and safe treatment of candidiasis.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259356

RESUMO

The aim of the present study is to develop Doxorubicin-Erlotinib nanoparticles (Dox-Erlo NPs) and folate-armored Dox-Erlo-NP conjugates for targeting glioma cancer. Glioma is one of the most common progressive cancerous growths originating from brain glial cells. However, the blood-brain barrier (BBB) is only semi-permeable and is highly selective as to which compounds are let through; designing compounds that overcome this constraint is therefore a major challenge in the development of pharmaceutical agents. We demonstrate that the NP conjugates studied in this paper may ameliorate the BBB penetration and enrich the drug concentration in the target bypassing the BBB. NPs were prepared using a biopolymer with a double-emulsion solvent evaporation technique and functionalized with folic acid for site-specific targeting. Dox-Erlo NPs and Dox-Erlo-NP conjugates were extensively characterized in vitro for various parameters. Dox-Erlo NPs and Dox-Erlo-NP conjugates incurred a z-average of 95.35 ± 10.25 nm and 110.12 ± 9.2 nm, respectively. The zeta potentials of the Dox-Erlo NPs and Dox-Erlo-NP conjugates were observed at -18.1 mV and -25.1 mV, respectively. A TEM image has shown that the NPs were well-dispersed, uniform, de-aggregated, and consistent. A hemolytic assay confirmed hemocompatibility with the developed formulation and that it can be safely administered. Dox-Erlo-NP conjugates significantly reduced the number of viable cells to 24.66 ± 2.08% and 32.33 ± 2.51% in U87 and C6 cells, respectively, and IC50 values of 3.064 µM and 3.350 µM in U87 and C6 cells were reported after 24 h, respectively. A biodistribution study revealed that a significant concentration of Dox and Erlo were estimated in the brain relative to drug suspension. Dox-Erlo-NP conjugates were also stable for three months. The findings suggest that the developed Dox-Erlo-NP conjugates may be a promising agent for administration in glioma therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...