Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 77: 164-170, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918008

RESUMO

A finite element model was developed to investigate the effect of loading regimes caused by various daily activities on the mechanical behaviour of the head-neck taper junction in modular hip replacements. The activities included stair up, stair down, sit to stand, stand to sit, one leg standing and knee bending. To present the real mechanical environment of the junction, in addition to the force components, the frictional moments produced by the frictional sliding of the head and cup were applied to a CoCr/CoCr junction having a 12/14 taper with a proximal mismatch angle of 0.024°. This study revealed that stair up with the highest fretting work per unit of length (1.62 × 104J/m) was the most critical activity, while knee bending and stand to sit with 1.96 × 103J/m were the least critical activities. For all the activities, the superolateral region of the neck was identified as the most critical region in terms of having larger values of fretting work per unit of area. This study showed also that the relative micro-motions and contact stresses occurring at the head-neck interface for all the studied activities are mostly in the range of 0-38µm and 0-350MPa, respectively. These ranges may be accordingly employed for conducting relevant in-vitro tests to more realistically represent the mechanical environment of taper junctions with the same materials and geometry studied in this work.


Assuntos
Artroplastia de Quadril , Cabeça do Fêmur/fisiologia , Prótese de Quadril , Teste de Materiais/métodos , Desenho de Prótese/métodos , Análise de Elementos Finitos , Fricção , Humanos , Pressão , Falha de Prótese , Resistência ao Cisalhamento , Estresse Mecânico
2.
J Mech Behav Biomed Mater ; 75: 470-476, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28823901

RESUMO

This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies.


Assuntos
Prótese de Quadril , Desenho de Prótese , Caminhada , Artroplastia de Quadril , Fenômenos Biomecânicos , Análise de Elementos Finitos , Marcha , Humanos
3.
Mater Sci Eng C Mater Biol Appl ; 79: 390-398, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629033

RESUMO

A detailed investigation was performed to characterize the fretting wear and corrosion damage to the neck component of a CoCrMo stem from a metal-on-polyethylene implant retrieved after 99months. The stem was a low-carbon (0.07wt%) wrought Co-28Cr-6Mo alloy with no secondary carbide phases in the matrix (γ-phase). The original design of the neck surface contained an intentionally fabricated knurled profile with a valley-to-peak range of approximately 11µm. Roughness measurements indicated that the tip of the knurled profile was significantly damaged, especially in the distal medial region of the neck, with up to a 22% reduction in the mean peak-to-valley height (Ra) compared to the original profile. As a new finding, the channels between the peaks of the profile created an additional crevice site in the presence of stagnant body fluid within the head-neck taper junction. These channels were observed to contain the most severe corroded areas and surface oxide layers with micro-cracks. SEM/EDS, XRD and XPS evaluations identified the formation of Cr2O3 as a corrosion product. Also, decobaltification was found to occur in these corroded areas. The findings of this work indicate the important role of the knurled profile in inducing additional crevice corrosion.


Assuntos
Corrosão , Ligas , Artroplastia de Quadril , Prótese de Quadril , Polietileno , Estresse Mecânico
4.
J Mech Behav Biomed Mater ; 60: 118-126, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26807768

RESUMO

The assembly force is important in establishing the mechanical environment at the head-neck taper junction of modular hip replacements. Previous experimental results of the assembled taper junctions with different material combinations (Co-28Cr-6Mo and Ti-6Al-4V) reported similar axial strengths (pull-off loads), but lower torsional strengths (twist-off moments) for the CoCr/CoCr junction. However, mechanics of the junction and the strength behaviour have not been understood yet. A three dimensional finite element model of an isolated femoral head-neck junction was developed to explore the assembly and disassembly procedures, particularly the axial and torsional strengths for different material combinations and geometries. Under the same assembly load, the contacting length between the CoCr head and titanium neck was greater than that of in CoCr/CoCr. The contact length in the titanium neck was more sensitive to the assembly force when compared to the CoCr neck. For instance, with increasing the assembly force from 1890 to 3700N, the contact length increased by 88% for CoCr/Ti and 59% for CoCr/CoCr junctions. The torsional strength of the junction was related to the lateral deformation of the neck material due to the applied moment. The angular mismatch existing between the head and neck components was found to play the main role in the torsional strength of the junction. The smaller mismatch angle the higher torsional strength. It is suggested to consider reducing the mismatch angle, particularly in CoCr/CoCr junctions, and ensure a sufficiently high assembly force is applied by impaction for this combination.


Assuntos
Cabeça do Fêmur/fisiologia , Prótese de Quadril , Desenho de Prótese , Artroplastia de Quadril , Cromo , Cobalto , Análise de Elementos Finitos , Humanos , Titânio
5.
Materials (Basel) ; 9(12)2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28774104

RESUMO

This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...