Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 233(1): 87-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20924765

RESUMO

We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.


Assuntos
Ácido Abscísico/metabolismo , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Triticum/fisiologia , Água/fisiologia , Biomassa , Floema/fisiologia , Estômatos de Plantas/fisiologia , Plântula/fisiologia , Temperatura , Triticum/crescimento & desenvolvimento , Xilema/fisiologia
2.
J Plant Physiol ; 162(1): 21-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15700417

RESUMO

Root cooling of 7-day-old wheat seedlings decreased root hydraulic conductivity causing a gradual loss of relative water content during 45 min (RWC). Subsequently (in 60 min), RWC became partially restored due to a decrease in transpiration linked to lower stomatal conductivity. The decrease in stomatal conductivity cannot be attributed to ABA-induced stomatal closure, since no increase in ABA content in the leaves or in the concentration in xylem sap or delivery of ABA from roots was found. However, decreased stomatal conductance was associated with a sharp decline in the content of cytokinins in shoots that was registered shortly after the start of root cooling and linked to increases in the activity of cytokinin-oxidase. This decrease in shoot cytokinin content may have been responsible for closing stomata, since this hormone is known to maintain stomatal opening when applied to plants. In support of this, pre-treatment with synthetic cytokinin benzyladenine was found to increase transpiration of wheat seedlings with cooled roots and bring about visible loss of turgor and wilting.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Triticum/fisiologia , Água/metabolismo , Ácido Abscísico/fisiologia , Temperatura Baixa , Citocininas/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...