Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39004301

RESUMO

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38740177

RESUMO

The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.


Assuntos
Brânquias , Palaemonidae , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Palaemonidae/genética , Palaemonidae/enzimologia , Brânquias/metabolismo , Brânquias/enzimologia , Brasil , Rios , Cinética
3.
Ecol Evol ; 7(9): 3167-3176, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28480016

RESUMO

Thermal tolerance underpins most biogeographical patterns in ectothermic animals. Macroevolutionary patterns of thermal limits have been historically evaluated, but a role for the phylogenetic component in physiological variation has been neglected. Three marine zoogeographical provinces are recognized throughout the Neotropical region based on mean seawater temperature (Tm): the Brazilian (Tm = 26 °C), Argentinian (Tm = 15 °C), and Magellanic (Tm = 9 °C) provinces. Microhabitat temperature (MHT) was measured, and the upper (UL 50) and lower (LL 50) critical thermal limits were established for 12 eubrachyuran crab species from intertidal zones within these three provinces. A molecular phylogenetic analysis was performed by maximum likelihood using the 16S mitochondrial gene, also considering other representative species to enable comparative evaluations. We tested for: (1) phylogenetic pattern of MHT, UL 50, and LL 50; (2) effect of zoogeographical province on the evolution of both limits; and (3) evolutionary correlation between MHT and thermal limits. MHT and UL 50 showed strong phylogenetic signal at the species level while LL 50 was unrelated to phylogeny, suggesting a more plastic evolution. Province seems to have affected the evolution of thermal tolerance, and only UL 50 was dependent on MHT. UL 50 was similar between the two northern provinces compared to the southernmost while LL 50 differed markedly among provinces. Apparently, critical limits are subject to different environmental pressures and thus manifest unique evolutionary histories. An asymmetrical macroevolutionary scenario for eubrachyuran thermal tolerance seems likely, as the critical thermal limits are differentially inherited and environmentally driven.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...