Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(40): 60084-60097, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35412185

RESUMO

Nanoparticles (NPs) have been progressively applied in the last decades, which may impact the environment. Synthesis of pigments, growing, and nutrient element uptake by plants can also be affected by NPs. The influence of lanthanum oxide nanoparticles (La2O3 NPs) on growth, pigment synthesis, and nutrient element uptake by Pfaffia glomerata (Spreng.) Pedersen, a medicinal plant native in South America, was evaluated in the present study. P. glomerata plantlets were cultivated for 28 days in the absence (control) and presence of 100, 200, and 400 mg L-1 of La2O3 NPs or bulk-La2O3 (b-La2O3) at the same cultivation conditions. Root development, aerial part growth, and pigment concentration in plants were affected by b-La2O3 and La2O3 NPs, mainly by La2O3 NPs. In spite of alteration of nutrient element concentration observed for the 100 and 200 mg L-1 of La2O3 NPs or b-La2O3 treatments, Ca, Cu, Fe, K, La, Mg, Mn, Mo, P, S, and Zn determination in stems and leaves revealed drastically and similar decrease of these elements in plants cultivated in the presence of 400 mg L-1 of La2O3 NPs or b-La2O3. Element distribution (mapping) determined by using laser ablation inductively coupled plasma mass spectrometry in leaves of plants submitted to treatment with 400 mg L-1 of b-La2O3 or La2O3 NPs showed differences in the distribution of elements, indicating distinct effects of b-La2O3 and La2O3 NPs on P. glomerata. As such, this study demonstrated that La2O3 NPs may impact plant growth. However, more investigations are necessary for better understanding of the effect of La2O3 on plants, including a broader range of concentration.


Assuntos
Amaranthaceae , Nanopartículas , Lantânio/farmacologia , Nutrientes , Óxidos
2.
Biosci. j. (Online) ; 36(6): 2041-2049, 01-11-2020. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1148052

RESUMO

The selection of potato plants (Solanum tuberosum L.) that are efficient in the use of phosphorus (P) plays an important role in increasing crop productivity, reducing the cost of production due to the high price of phosphate fertilizers, as well as reducing the pollution of the environment due to the better use of the applied fertilizers. The objective of this work was to compare the method of selection of potato clones for the efficiency of use and response to P between in vitro and off - soil systems with the use of sand as substrate. To that end, potato clones SMIC 148-A, Dakota Rose, SMINIA 793101-3, SMIB 106-7, SMIF 212-3, SMIJ 319-1 and P 150 were cultivated at low and high levels of P in the culture systems in vitro (1,935 and 19,346 mg P L-1) and off-soil (2.32 and 23.2 mg P L-1). The selection of potato clones using only as a criterion the accumulation of P under low nutrient level is not adequate, both in off-soil and in vitro cultivation. Clones selected as being more efficient in the use of P in in vitro cultivation do not prove to be necessarily more efficient in off-soil cultivation. No clone remains in the same classification group regarding the efficiency of use and response to P, based on the production of dry mass, in the two cropping systems.


A seleção de plantas de batata (Solanum tuberosum L.) que são eficientes no uso de fósforo (P) desempenha um papel importante no aumento da produtividade das culturas. reduzindo o custo de produção devido ao alto preço dos fertilizantes fosfatados. além de reduzir a poluição do meio ambiente devido ao melhor uso dos fertilizantes aplicados. O objetivo deste trabalho foi comparar o método de seleção de clones de batata quanto à eficiência de uso e resposta ao P entre sistemas in vitro e fora do solo com o uso de areia como substrato. Para o efeito. os clones de batata SMIC 148-A. Dakota Rose. SMINIA 793101-3. SMIB 106-7. SMIF 212-3. SMIJ 319-1 e P 150 foram cultivados a baixos e altos níveis de P nos sistemas de cultivo in vitro (1.935 e 19.346 mg P L-1) e fora do solo (2.32 e 23.2 mg P L-1). A seleção de clones de batata utilizando apenas como critério o acúmulo de P em baixo nível de nutrientes não é adequada. tanto no cultivo fora do solo quanto no in vitro. Clones selecionados como mais eficientes no uso de P em cultivo in vitro não se mostraram necessariamente mais eficientes no cultivo fora do solo. Nenhum clone permanece no mesmo grupo de classificação quanto à eficiência de uso e resposta ao P. baseado na produção de massa seca nos dois sistemas de cultivo.


Assuntos
Técnicas In Vitro , Solanum tuberosum
3.
Chemosphere ; 253: 126692, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283427

RESUMO

Zinc (Zn) is a micronutrient, but its excessive concentration can impair plant growth and development. Fertilizers, liming materials, pesticides and fungicides containing Zn have contributed to increase its concentration in agricultural soils. The aim of the present study is to evaluate the effect of Zn excess on the non-enzymatic (anthocyanin and ß-ecdysone) and enzymatic (superoxide dismutase-SOD and guaiacol peroxidase-GPX) antioxidant system of two P. glomerata accessions (JB and GD) grown in hydroponic system and soil, under short- and long-term exposure times. Three Zn levels (2, 100 and 200 µM) and two short-term exposure times (7 and 14 d) were tested in the hydroponic experiment. Three Zn levels (2, 100 and 200 mg kg-1) and two long-term exposure times (34 and 74 d) were tested in the soil experiment. The effects of Zn excess on P. glomerata accessions depended on the growth system and exposure time. Zinc excess in both tested growth systems resulted in significant change in the tissue oxidative process (MDA concentration) in both accessions, as well as broadened the antioxidant system response, which was based on antioxidant enzymes (SOD and GPX) and secondary metabolites (anthocyanins and ß-ecdysone). The highest anthocyanin concentration was observed in accession JB, which was grown in hydroponics, but tissue anthocyanin concentration increased in both accessions, regardless of growth medium and exposure time. The ß-ecdysone concentration in the roots increased in both accessions, but accession GD was more responsive to Zn excess. There was significant physiological variation in P.glomerata accessions in response to Zn excess.


Assuntos
Amaranthaceae/fisiologia , Poluentes do Solo/toxicidade , Zinco/toxicidade , Amaranthaceae/genética , Amaranthaceae/metabolismo , Antocianinas , Antioxidantes/metabolismo , Variação Genética , Hidroponia , Oxirredução , Peroxidase , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/análise , Superóxido Dismutase/metabolismo , Zinco/análise
4.
Front Plant Sci ; 11: 273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256508

RESUMO

A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.

5.
Oecologia ; 186(3): 633-643, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29332147

RESUMO

Different growth rates of grasses from South American natural grasslands are adaptations to soils of low fertility. Grasses with fast growth rate are species with an accumulation of nutrients in soluble forms, with a high metabolic rate. This work aimed to study whether grasses with different growth rates have different phosphorus (P) uptake and efficiency of P use with high and low P availability in soil, as well as whether phosphatase activity is related to the species growth rate and variations in P biochemical forms in the tissues. Three native grasses (Axonopus affinis, Paspalum notatum, and Andropogon lateralis) were grown in pots with soil. Along plant growth, biomass production and its structural components were measured, as well as leaf acid phosphatase activity and leaf P chemical fractions. At 40 days of growth, leaf acid phosphatase activity declined by about 20-30% with an increase of P availability in soil for A. affinis and P. notatum, respectively. Under both soil P levels, P. notatum showed the highest plant total biomass, leaf dry weight and highest P use efficiency. A. affinis presented the higher P uptake efficiency and soluble organic P concentration in the leaf tissues. A. lateralis showed P-Lipid concentration 1.6 and 1.3 times higher than A. affinis and P. notatum, respectively. In conclusion, acid phosphatase activity in grass of higher growth rate is related to higher remobilization of P due to higher demand, as in A. affinis, and higher growth rates are associated with higher P uptake efficiency.


Assuntos
Fósforo , Poaceae , Monoéster Fosfórico Hidrolases , Solo
6.
Nutr. hosp ; 32(5): 2294-2300, nov. 2015. tab, graf
Artigo em Inglês | IBECS | ID: ibc-145562

RESUMO

Background/Aims: to examine the relationship between the antioxidant potential and severity parameters of cirrhosis in humans. Methods: fifteen patients with hepatic cirrhosis (nine subjects - Child group B, and six subjects - Child group C) and nine control subjects were enrolled in the study. The main criteria taken into account to characterize the diagnosis of cirrhosis and its complications were the AST: ALT ratio, AST to platelet ratio index, Bonacini score, Meld score and Child classification. Those parameters were determined based on laboratory results and patient’s clinical records. Se, Zn, ascorbic acid (AA) levels and oxidative stress parameters were measured in blood samples of cirrhotic patients. Results: the analysis of plasma levels of Se and AA showed low concentrations in cirrhotic patients compared with control subjects (P < 0.05). Though, there was a positive correlation between plasma of Se and severity parameters of cirrhosis in patients of Child group B and C. In the activity of the antioxidant enzymes only catalase was lower in patients of Child group C compared with control group. Conclusion: we found low plasma levels of Se and AA among cirrhotic patients. However, is not clear why selenium levels tend to increase with the severity of liver cirrhosis (AU)


Introducción/Objetivos: examinar la relación entre los potenciales antioxidantes y los parámetros de gravedad de la cirrosis en los seres humanos. Métodos: quince pacientes con cirrosis hepática (nueve sujetos - grupo Child B, y seis sujetos - grupo Child C) y nueve sujetos control fueron incluidos en el estudio. Los principales criterios que se tuvieron en cuenta para caracterizar el diagnóstico de la cirrosis y sus complicaciones fueron la AST: relación de ALT, AST índice de la relación de plaquetas, clasificación Bonacini, clasificación MELD y clasificación de Child. Estos parámetros fueron determinados con base en los resultados de laboratorio y los registros clínicos del paciente. Se midieron los niveles de Zn, ácido ascórbico (AA) y los parámetros de estrés oxidativo en muestras de sangre de pacientes cirróticos. Resultados: el análisis de los niveles plasmáticos de Se y AA mostraron bajas concentraciones en los pacientes cirróticos en comparación con los sujetos control (P < 0,05); sin embargo, hubo una correlación positiva entre el plasma de Se y los parámetros de gravedad de la cirrosis en pacientes del grupo Child B y C. En la actividad de las enzimas antioxidantes catalasa solamente fue menor en los pacientes del grupo Child C, en comparación con el grupo control. Conclusión: se encontraron niveles bajos en plasma de Se y AA en pacientes cirróticos. Sin embargo, no está claro por qué los niveles de selenio tienden a aumentar con la gravedad de la cirrosis hepática (AU)


Assuntos
Humanos , Cirrose Hepática/fisiopatologia , Selênio/sangue , Ácido Ascórbico/sangue , Antioxidantes/farmacocinética , Índice de Gravidade de Doença , Estudos de Casos e Controles
7.
Ecotoxicology ; 21(1): 111-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21858511

RESUMO

This work aimed to study the process of stress adaptation in root and leaves of different developmental stages (apex, middle and basal regions) of Pluchea sagittalis (Lam.) Cabrera plants grown under exposure to five Pb levels (0, 200, 400, 600 and 1000 µM) for 30 days. Pb concentration and content in roots, stems, and leaves of different developmental stages increased with external Pb level. Consumption of nutrient solution, transpiration ratio, leaf fresh weight, leaf area, and shoot length decreased upon addition of Pb treatments. However, dry weight of shoot parts and roots did not decrease upon addition of Pb treatments. Based on index of tolerance, the roots were much more tolerant to Pb than shoots. δ-aminolevulinic acid dehydratase activity was decreased by Pb treatments, whereas carotenoid and chlorophyll concentrations were not affected. Lipid peroxidation and hydrogen peroxide concentration both in roots and leaves increased with increasing Pb levels. Pb treatments increased ascorbate peroxidase activity in all plant parts, while superoxide dismutase activity increased in leaves and did not change in roots. Catalase activity in leaves from the apex shoot was not affected by Pb, but in other plant parts it was increased. Pb toxicity caused increase in non-protein thiol groups concentration in shoot parts, whereas no significant difference was observed in roots. Both root and shoot ascorbic acid concentration increased with increasing Pb level. Therefore, it seems that Pb stress triggered an efficient defense mechanism against oxidative stress in P. sagittalis but its magnitude was depending on the plant organ and of their physiological status. In addition, these results suggest that P. sagittalis is Pb-tolerant. In conclusion, P. sagittalis is able to accumulate on average 6730 and 550 µg Pb g(-1) dry weight, respectively, in the roots and shoot, a physiological trait which may be exploited for the phytoremediation of contaminated soils and waters.


Assuntos
Asteraceae/efeitos dos fármacos , Chumbo/análise , Chumbo/farmacocinética , Ascorbato Peroxidases/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Asteraceae/crescimento & desenvolvimento , Biodegradação Ambiental , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
8.
Biometals ; 24(5): 959-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21553242

RESUMO

The possible role of zinc (Zn) to reverse the oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets. Thirty-day-old acclimatized plantlets of P. glomerata were exposed to four treatments: control, 50 µM Zn, 50 µM Hg and 50 µM Zn + 50 µM Hg for 9 days. In Zn + Hg treatment, shoot and root Hg concentrations were 59 and 24% smaller than that plants exposed to 50 µM Hg added alone. An increase in the Zn concentration in the shoot of plants exposed to Zn + Hg occurred, although in the roots Zn concentration was not altered, when compared to the control. Fresh and dry weights, as well as the activity of δ-aminolevulinic acid dehydratase (δ-ALA-D) in Hg-treated plants were significantly reduced. Percentage survival, fresh and dry weights and δ-ALA-D activity of plants treated by 50 µM Zn + 50 µM Hg were greater than of that treated by Hg alone. Moreover, Zn treatment reduced the lipid peroxidation caused by Hg, being this effect related to increased root superoxide dismutase activity, and shoot catalase and ascorbate peroxidase activities. In conclusion, the presence of Zn in the substrate caused a significant reduction in the oxidative stress induced by Hg.


Assuntos
Amaranthaceae/efeitos dos fármacos , Mercúrio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Zinco/farmacologia , Amaranthaceae/metabolismo , Relação Dose-Resposta a Droga , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
9.
Plant Physiol Biochem ; 48(8): 683-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20554214

RESUMO

Aluminum (Al) is one of the most abundant elements of the planet and exposure to this metal can cause oxidative stress and lead to various signs of toxicity in plants. Plants are essential organisms for the environment as well as food for humans and animals. The toxic effect of aluminum is the major cause of decreased crop productivity. Thus, the objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT - E.C. 1.11.1.6), superoxide dismutase (SOD - E.C.1.15.1.1) and ascorbate peroxidase (APX - E.C. 1.11.1.11), and on lipid peroxidation, electrolyte leakage percentage (ELP) and chlorophyll and protein oxidation levels in Cucumis sativus L. (cv. Aodai). Seedlings were grown at different concentrations of aluminum ranging from 1 to 2000 microM for 10 days. The increase in ELP and H(2)O(2) production observed in the seedlings may be related to the decreased efficiency of the antioxidant system at higher aluminum concentrations. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation, protein oxidation and a decrease in the growth of Cucumis seedlings. Aluminum toxicity triggered alterations in the antioxidant and physiological status of growing cucumber seedlings.


Assuntos
Alumínio/toxicidade , Cucumis sativus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Ascorbato Peroxidases , Catalase/metabolismo , Clorofila/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/metabolismo , Relação Dose-Resposta a Droga , Eletrólitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidases/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Plântula/enzimologia , Plântula/metabolismo , Superóxido Dismutase/metabolismo
10.
Ciênc. rural ; 39(9): 2625-2628, dez. 2009. ilus
Artigo em Português | LILACS | ID: lil-534753

RESUMO

Devido, principalmente, às ações antropogênicas, tais como industrialização e uso de insumos na agricultura, os níveis de cádmio têm aumentado em muitos solos agrícolas. O presente trabalho objetivou caracterizar o efeito desse metal no crescimento in vitro de duas cultivares de batata, 'Asterix' e 'Macaca'. Segmentos nodais de plantas previamente estabelecidas in vitro foram submetidos a doses de cádmio de 0 (controle), 100, 200, 300, 400 e 500µM em meio de cultivo MS. Avaliou-se o número de raízes aos 15 dias após a inoculação (DAI) dos explantes, o comprimento das raízes e da parte aérea, o número de segmentos nodais e de folhas e a matéria fresca e seca das raízes e da parte aérea aos 22DAI. O cádmio afetou negativamente o crescimento das duas cultivares de batata, demonstrando que ambas são sensíveis a esse metal.


Levels of cadmium have been increasing in many agricultural soils mainly due to the anthropogenic actions, such as industrialization and use of inputs in the agriculture. The present research aimed at characterizing the effect of this metal on in vitro growth of two potato cultivars, 'Asterix' and 'Macaca'. Nodal segments of plants previously in vitro established were submitted to cadmium concentration of 0 (control), 100, 200, 300, 400 and 500µM in MS. Number of roots was evaluated at 15 days after inoculation (DAI) of the explants, and root and shoot length, number of nodal segments and leaves, and fresh and dry mass of roots and shoot were evaluated at 22DAI. Cadmium negatively affected the growth of the two potato cultivars, demonstrating that both are sensible to this metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...