Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 11(4): 4402-10, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23096909

RESUMO

Iron (Fe) is an essential element for plant growth. Commonly, this element is found in an oxidized form in soil, which is poorly available for plants. Therefore, plants have evolved ferric-chelate reductase enzymes (FRO) to reduce iron into a more soluble ferrous form. Fe scarcity in plants induce the FRO enzyme activity. Although the legume Medicago truncatula has been employed as a model for FRO activity studies, only one copy of the M. truncatula MtFRO1 gene has been characterized so far. In this study, we identified multiple gene copies of the MtFRO gene in the genome of M. truncatula by an in silico search, using BLAST analysis in the database of the M. truncatula Genome Sequencing Project and the National Center for Biotechnology Information, and also determined whether they are functional. We identified five genes apart from MtFRO1, which had been already characterized. All of the MtFRO genes exhibited high identity with homologous FRO genes from Lycopersicon esculentum, Citrus junos and Arabidopsis thaliana. The gene copies also presented characteristic conserved FAD and NADPH motifs, transmembrane regions and oxidoreductase signature motifs. We also detected expression in five of the putative MtFRO sequences by semiquantitative RT-PCR analysis, performed with mRNA from root and shoot tissues. Iron scarcity might be a condition for an elevated expression of the MtFRO genes observed in different M. truncatula tissues.


Assuntos
FMN Redutase/genética , Medicago truncatula/enzimologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Indução Enzimática , FMN Redutase/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Medicago truncatula/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
2.
Genet Mol Res ; 11(3): 2665-73, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22869080

RESUMO

We looked for bacterial strains with antifungal activity in the sorghum rhizosphere. A prescreening procedure to search for hemolytic activity among the isolated strains allowed us to detect good fungitoxic activity in a bacterial isolate that we named UM96. This bacterial isolate showed strong growth inhibition in bioassays against the pathogens Diaporthe phaseolorum, Colletotrichum acutatum, Rhizoctonia solani, and Fusarium oxysporum. The supernatant of isolate UM96 also showed strong hemolytic activity, which was not observed in the protease-treated supernatant. However, the supernatant that was treated with protease had similar antagonistic effects to those exhibited by the supernatant that was not treated with this enzyme. These results suggest that a bacteriocin-like compound is responsible for the hemolytic activity; whereas, as far as antifungal effect is concerned, an antibiotic of nonribosomal origin, such as a lipopeptide, might be acting. Further molecular characterization by partial 16S rDNA sequencing placed isolate UM96 in a cluster with Bacillus amyloliquefaciens; however, the highest identity match found in databases of Bacillus species was 91% identity. This suggests that Bacillus sp UM96 might be a novel species.


Assuntos
Antifúngicos/farmacologia , Bacillus/genética , Bacillus/isolamento & purificação , Fungos/efeitos dos fármacos , Rizosfera , Sorghum/microbiologia , Sequência de Bases , DNA Ribossômico/genética , Fungos/crescimento & desenvolvimento , Genes Bacterianos/genética , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular
3.
Open Microbiol J ; 4: 83-92, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21253462

RESUMO

Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...