Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38978588

RESUMO

Background: Vocal learning is a rare, convergent trait that is fundamental to both human speech and birdsong. The Forkhead Box P2 (FoxP2) transcription factor appears necessary for both types of learned signals, as human mutations in FoxP2 result in speech deficits, and disrupting its expression in zebra finches impairs male-specific song learning. In juvenile and adult male finches, striatal FoxP2 mRNA and protein decline acutely within song-dedicated neurons during singing, indicating that its transcriptional targets are also behaviorally regulated. The identities of these targets in songbirds, and whether they differ across sex, development and/or behavioral conditions, are largely unknown. Results: Here we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to identify genomic sites bound by FoxP2 in male and female, juvenile and adult, and singing and non-singing birds. Our results suggest robust FoxP2 binding concentrated in putative promoter regions of genes. The number of genes likely to be bound by FoxP2 varied across conditions, suggesting specialized roles of the candidate targets related to sex, age, and behavioral state. We validated these binding targets both bioinformatically, with comparisons to previous studies and biochemically, with immunohistochemistry using an antibody for a putative target gene. Gene ontology analyses revealed enrichment for human speech- and language-related functions in males only, consistent with the sexual dimorphism of song learning in this species. Fewer such targets were found in juveniles relative to adults, suggesting an expansion of this regulatory network with maturation. The fewest speech-related targets were found in the singing condition, consistent with the well-documented singing-driven down-regulation of FoxP2 in the songbird striatum. Conclusions: Overall, these data provide an initial catalog of the regulatory landscape of FoxP2 in an avian vocal learner, offering dozens of target genes for future study and providing insight into the molecular underpinnings of vocal learning.

3.
Philos Trans R Soc Lond B Biol Sci ; 375(1789): 20190060, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31735151

RESUMO

Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'


Assuntos
Evolução Biológica , Idioma , Neurociências , Aves Canoras/fisiologia , Animais , Encéfalo/fisiologia , Humanos , Neurônios , Maturidade Sexual , Fala , Vocalização Animal/fisiologia
4.
Neuron ; 96(5): 958-960, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29216457

RESUMO

Spoken languages such as German are extremely discrete, whereas others such as Portuguese are melodic or "sing-song" wherein identifying a word relies on what comes before and after. Perhaps surprisingly, birdsong also exhibits specificity and generalization as articulated by Tian and Brainard (2017).


Assuntos
Aves Canoras , Animais , Idioma , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...