Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37107800

RESUMO

The Wearable Internet of Medical Things (WIoMT) is a collective term for all wearable medical devices connected to the internet to facilitate the collection and sharing of health data such as blood pressure, heart rate, oxygen level, and more. Standard wearable devices include smartwatches and fitness bands. This evolving phenomenon due to the IoT has become prevalent in managing health and poses severe security and privacy risks to personal information. For better implementation, performance, adoption, and secured wearable medical devices, observing users' perception is crucial. This study examined users' perspectives of trust in the WIoMT while also exploring the associated security risks. Data analysed from 189 participants indicated a significant variance (R2 = 0.553) on intention to use WIoMT devices, which was determined by the significant predictors (95% Confidence Interval; p < 0.05) perceived usefulness, perceived ease of use, and perceived security and privacy. These were found to have important consequences, with WIoMT users intending to use the devices based on the trust factors of usefulness, easy to use, and security and privacy features. Further outcomes of the study identified how users' security matters while adopting the WIoMT and provided implications for the healthcare industry to ensure regulated devices that secure confidential data.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Segurança Computacional , Privacidade , Percepção , Internet
2.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015915

RESUMO

Prediabetes and diabetes are becoming alarmingly prevalent among adolescents over the past decade. However, an effective screening tool that can assess diabetes risks smoothly is still in its infancy. In order to contribute to such significant gaps, this research proposes a machine learning-based predictive model to detect adolescent diabetes. The model applies supervised machine learning and a novel feature selection method to the National Health and Nutritional Examination Survey datasets after an exhaustive search to select reliable and accurate data. The best model achieved an area under the curve (AUC) score of 71%. This research proves that a screening tool based on supervised machine learning models can assist in the automated detection of youth diabetes. It also identifies some critical predictors to such detection using Lasso Regression, Random Forest Importance and Gradient Boosted Tree Importance feature selection methods. The most contributing features to Youth diabetes detection are physical characteristics (e.g., waist, leg length, gender), dietary information (e.g., water, protein, sodium) and demographics. These predictors can be further utilised in other areas of medical research, such as electronic medical history.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Adolescente , Área Sob a Curva , Estudos de Viabilidade , Humanos , Inquéritos Nutricionais
3.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466730

RESUMO

This paper proposes a novel identity management framework for Internet of Things (IoT) and cloud computing-based personalized healthcare systems. The proposed framework uses multimodal encrypted biometric traits to perform authentication. It employs a combination of centralized and federated identity access techniques along with biometric based continuous authentication. The framework uses a fusion of electrocardiogram (ECG) and photoplethysmogram (PPG) signals when performing authentication. In addition to relying on the unique identification characteristics of the users' biometric traits, the security of the framework is empowered by the use of Homomorphic Encryption (HE). The use of HE allows patients' data to stay encrypted when being processed or analyzed in the cloud. Thus, providing not only a fast and reliable authentication mechanism, but also closing the door to many traditional security attacks. The framework's performance was evaluated and validated using a machine learning (ML) model that tested the framework using a dataset of 25 users in seating positions. Compared to using just ECG or PPG signals, the results of using the proposed fused-based biometric framework showed that it was successful in identifying and authenticating all 25 users with 100% accuracy. Hence, offering some significant improvements to the overall security and privacy of personalized healthcare systems.


Assuntos
Computação em Nuvem , Internet das Coisas , Biometria , Segurança Computacional , Atenção à Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...