Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 980, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225361

RESUMO

The American chestnut (Castanea dentata, 2n = 2x = 24), once known as the "King of the Appalachian Forest", was decimated by chestnut blight during the first half of the twentieth century by an invasive fungus (Cryphonectria parasitica). The Chinese chestnut (C. mollissima, 2n = 2x = 24), in contrast to American chestnut, is resistant to this blight. Efforts are being made to transfer this resistance to American chestnut through backcross breeding and genetic engineering. Both chestnut genomes have been genetically mapped and recently sequenced to facilitate gene discovery efforts aimed at assisting molecular breeding and genetic engineering. To complement and extend this genomic work, we analyzed the distribution and organization of their ribosomal DNAs (35S and 5S rDNA), and the chromatin composition of the nucleolus organizing region (NOR)-associated satellites. Using fluorescent in situ hybridization (FISH), we have identified two 35S (one major and one minor) and one 5S rDNA sites. The major 35S rDNA sites are terminal and sub-terminal in American and Chinese chestnuts, respectively, originating at the end of the short arm of the chromosome, extending through the secondary constriction and into the satellites. An additional 5S locus was identified in certain Chinese chestnut accessions, and it was linked distally to the major 35S site. The NOR-associated satellite in Chinese chestnut was found to comprise a proximal region packed with 35S rDNA and a distinct distal heterochromatic region. In contrast, the American chestnut satellite was relatively small and devoid of the distal heterochromatic region.


Assuntos
Cromatina , Melhoramento Vegetal , Cromatina/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Genômica
3.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708394

RESUMO

Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.


Assuntos
Quercus , Quercus/genética , Filogenia , Haplótipos , Genômica , Cromossomos
4.
Mol Ecol Resour ; 22(4): 1284-1302, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34748273

RESUMO

Green ash (Fraxinus pennsylvanica) is the most widely distributed ash tree in North America. Once common, it has experienced high mortality from the non-native invasive emerald ash borer (EAB; Agrilus planipennis). A small percentage of native green ash trees that remain healthy in long-infested areas, termed "lingering ash," display partial resistance to the insect, indicating that breeding and propagating populations with higher resistance to EAB may be possible. To assist in ash breeding, ecology and evolution studies, we report the first chromosome-level assembly from the genus Fraxinus for F. pennsylvanica with over 99% of bases anchored to 23 haploid chromosomes, spanning 757 Mb in total, composed of 49.43% repetitive DNA, and containing 35,470 high-confidence gene models assigned to 22,976 Asterid orthogroups. We also present results of range-wide genetic variation studies, the identification of candidate genes for important traits including potential EAB-resistance genes, and an investigation of comparative genome organization among Asterids based on this reference genome platform. Residual duplicated regions within the genome probably resulting from a recent whole genome duplication event in Oleaceae were visualized in relation to wild olive (Olea europaea var. sylvestris). We used our F. pennsylvanica chromosome assembly to construct reference-guided assemblies of 27 previously sequenced Fraxinus taxa, including F. excelsior. Thus, we present a significant step forward in genomic resources for research and protection of Fraxinus species.


Assuntos
Besouros , Fraxinus , Oleaceae , Animais , Fraxinus/genética , Insetos , Larva , Melhoramento Vegetal
5.
Sci Rep ; 10(1): 13174, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764541

RESUMO

The African baobab (Adansonia digitata L.), also referred to as the "Tree of Life", is a majestic, long-lived and multipurpose tree of sub-Saharan Africa. Internationally, a growing demand for baobab products in the food, pharmaceutical and cosmetics industries has been observed. Considering this, there is a need for scientific information on the genetics and breeding of A. digitata, including cytogenetics, genetic diversity and reproductive biology. The objectives of our cytogenetic research were to determine the genome size, chromosome number, and organization of ribosomal DNA (45S and 5SrDNA) of A. digitata. Flow cytometry analysis revealed a 2C-DNA value of 3.8 ± 0.6 pg (1Cx monoploid genome size 919.1 ± 62.9 Mbp). Using our improved chromosome preparation technique, we were able to unequivocally count the chromosomes resulting in 2n = 4x = 168, a revised chromosome number for A. digitata. Fluorescent in situ hybridization (FISH) analysis revealed two massively large variants of 45S rDNA and their corresponding nucleolus organizer regions (NOR). The NOR variants were about two to four times larger than the main body of their respective chromosomes. To our knowledge, this is the first report of this phenomenon in a plant species. Furthermore, we found that FISH analysis using the Arabidopsis-type telomere repeat sequence probe clarified and confirmed the new chromosome number and characterized the 45S rDNA structural organization.


Assuntos
Adansonia/citologia , Adansonia/genética , Cromossomos de Plantas/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico , Telômero/genética
6.
Genome Biol Evol ; 8(4): 1252-66, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27190138

RESUMO

Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants.


Assuntos
Artrópodes/genética , Transferência Genética Horizontal , Retroelementos , Traqueófitas/genética , Animais , Cycadopsida/genética , Dosagem de Genes , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA