Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 19(1): 46, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549977

RESUMO

BACKGROUND: Reducing the energy cost of running with exoskeletons could improve enjoyment, reduce fatigue, and encourage participation among novice and ageing runners. Previously, tethered ankle exoskeleton emulators with offboard motors were used to greatly reduce the energy cost of running with powered ankle plantarflexion assistance. Through a process known as "human-in-the-loop optimization", the timing and magnitude of assistance torque was optimized to maximally reduce metabolic cost. However, to achieve the maximum net benefit in energy cost outside of the laboratory environment, it is also necessary to consider the tradeoff between the magnitude of device assistance and the metabolic penalty of carrying a heavier, more powerful exoskeleton. METHODS: In this study, tethered ankle exoskeleton emulators were used to characterize the effect of peak assistance torque on metabolic cost during running. Three recreational runners participated in human-in-the-loop optimization at four fixed peak assistance torque levels to obtain their energetically optimal assistance timing parameters at each level. RESULTS: We found that the relationship between metabolic rate and peak assistance torque was nearly linear but with diminishing returns at higher torque magnitudes, which is well-approximated by an asymptotic exponential function. At the highest assistance torque magnitude of 0.8 Nm/kg, participants' net metabolic rate was 24.8 ± 2.3% (p = 4e-6) lower than running in the unpowered devices. Optimized timing of peak assistance torque was as late as allowed during stance (80% of stance) and optimized timing of torque removal was at toe-off (100% of stance); similar assistance timing was preferred across participants and torque magnitudes. CONCLUSIONS: These results allow exoskeleton designers to predict the energy cost savings for candidate devices with different assistance torque capabilities, thus informing the design of portable ankle exoskeletons that maximize net metabolic benefit.


Assuntos
Exoesqueleto Energizado , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Metabolismo Energético , Marcha , Humanos , Torque , Caminhada
2.
Med Sci Sports Exerc ; 54(4): 633-645, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816812

RESUMO

PURPOSE: We tested the hypotheses that a highly cushioned running shoe (HCS) would 1) improve incremental exercise performance and reduce the oxygen cost (Oc) of submaximal running, and 2) attenuate the deterioration in Oc elicited by muscle damage consequent to a downhill run. METHODS: Thirty-two recreationally active participants completed an incremental treadmill test in an HCS and a control running shoe (CON) for the determination of Oc and maximal performance. Subsequently, participants were pair matched and randomly assigned to one of the two footwear conditions to perform a moderate-intensity running bout before and 48 h after a 30-min downhill run designed to elicit muscle damage. RESULTS: Incremental treadmill test performance was improved (+5.7%; +1:16 min:ss; P < 0.01) in the HCS when assessed in the nondamaged state, relative to CON. This coincided with a significantly lower Oc (-3.2%; -6 mL·kg-1·km-1; P < 0.001) at a range of running speeds and an increase in the speed corresponding to 3 mM blood lactate (+3.2%; +0.4 km·h-1; P < 0.05). As anticipated, the downhill run resulted in significant changes in biochemical, histological, and perceptual markers of muscle damage, and a significant increase in Oc (+5.2%; 10.1 mL·kg-1·km-1) was observed 48 h post. In the presence of muscle damage, Oc was significantly lower in HCS (-4.6%; -10 mL·kg-1·km-1) compared with CON. CONCLUSIONS: These results indicate that HCS improved incremental exercise performance and Oc in the absence of muscle damage and show, for the first time, that despite worsening of Oc consequent to muscle damage, improved Oc in HCS is maintained.


Assuntos
Corrida , Sapatos , Exercício Físico , Teste de Esforço , Humanos , Músculos , Corrida/fisiologia
3.
Sports Med ; 48(6): 1521-1522, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29249085

RESUMO

An Online First version of this article was made available online at https://link.springer.com/article/10.1007/s40279-017-0811-2 on 16 November 2017. An error was subsequently identified in the article, and the following correction should be noted.

4.
Sports Med ; 48(4): 1009-1019, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29143929

RESUMO

BACKGROUND: Reducing the energetic cost of running seems the most feasible path to a sub-2-hour marathon. Footwear mass, cushioning, and bending stiffness each affect the energetic cost of running. Recently, prototype running shoes were developed that combine a new highly compliant and resilient midsole material with a stiff embedded plate. OBJECTIVE: The aim of this study was to determine if, and to what extent, these newly developed running shoes reduce the energetic cost of running compared with established marathon racing shoes. METHODS: 18 high-caliber athletes ran six 5-min trials (three shoes × two replicates) in prototype shoes (NP), and two established marathon shoes (NS and AB) during three separate sessions: 14, 16, and 18 km/h. We measured submaximal oxygen uptake and carbon dioxide production during minutes 3-5 and averaged energetic cost (W/kg) for the two trials in each shoe model. RESULTS: Compared with the established racing shoes, the new shoes reduced the energetic cost of running in all 18 subjects tested. Averaged across all three velocities, the energetic cost for running in the NP shoes (16.45 ± 0.89 W/kg; mean ± SD) was 4.16 and 4.01% lower than in the NS and AB shoes, when shoe mass was matched (17.16 ± 0.92 and 17.14 ± 0.97 W/kg, respectively, both p < 0.001). The observed percent changes were independent of running velocity (14-18 km/h). CONCLUSION: The prototype shoes lowered the energetic cost of running by 4% on average. We predict that with these shoes, top athletes could run substantially faster and achieve the first sub-2-hour marathon.


Assuntos
Atletas , Metabolismo Energético , Corrida , Sapatos , Adulto , Altitude , Fenômenos Biomecânicos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...