Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 242(2): 235-244, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073672

RESUMO

Organotins such as tributyltin chloride (TBT), are highly diffused environmental pollutants, which act as metabolism disrupting chemicals, i.e. may interfere with fat tissue differentiation, as well as with neuroendocrine circuits, thus impairing the control of energetic balance. We have previously demonstrated that adult exposure to TBT altered the expression of neuropeptides in the hypothalamus. In this study, we orally administered daily a solution containing oil, or TBT (0.25, 2.5, or 25 µg/kg body weight/day) to pregnant females from gestational day 8 until birth, and to their pups from day 0 until post-natal day 21. Our results showed that TBT exposure of female mice during gestation and of pups during lactation permanently altered the feeding efficiency of pups of both sexes and subcutaneous fat distribution in adult males. In addition, the neuropeptide Y system was affected at the level of the paraventricular nucleus, with a decrease in immunoreactivity in both sexes (significant in females for all TBT doses and in males only for intermediate TBT doses), while no effect was observed in other hypothalamic areas (arcuate, ventromedial and dorsomedial nuclei). Metabolic syndrome, as well as obesity and diabetes, which are significant health issues, are considered multifactorial diseases and may be caused by exposure to metabolic disruptors, both in adults and during perinatal life. In addition, our work indicates that TBT doses defined as the tolerably daily intake had a profound and sex-specific long-term effect.


Assuntos
Neuropeptídeo Y , Núcleo Hipotalâmico Paraventricular , Gravidez , Masculino , Camundongos , Animais , Feminino , Núcleo Hipotalâmico Paraventricular/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Hipotálamo/metabolismo , Comportamento Alimentar
2.
Psychoneuroendocrinology ; 133: 105393, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481327

RESUMO

Maternal separation (MS) is a known chronic stressor in the postnatal period and when associated with another paradigm like the activity-based anorexia (ABA) rat model, causes different effects in the two sexes. In ABA females, the separation leads to increased hyperactivity and anxiety reduction, whereas, in males, the separation induces decreased locomotor activity without similar reduction of anxiety-like behaviors as observed in females. To understand the mechanisms altered by MS in synergy with the induction of the anorexic-like phenotype, we considered the reward system, which involves neurons synthesizing dopamine (DA) in the ventral tegmental area (VTA), substantia nigra pars compacta, and serotoninergic neurons in the dorsal raphe nucleus. Moreover, we analyzed the orexin circuit in the lateral hypothalamic area (LHA), which affects DA synthesis in the VTA and is also known to regulate food consumption and locomotor activity. Rats of both sexes were exposed to the two paradigms (MS and ABA), leading to four experimental groups for each sex: non-separated control (CON), non-separated ABA groups (ABA), MS control (MSCON), and MS plus ABA groups (MSABA). Immunohistochemistry analysis was performed to determine quantitative differences in the number of cells expressing DA, orexin, and serotonin (5-HT) among the experimental groups. The results showed that, in the DA system, the effect of MS was more evident in females than in males, with a substantial increase in DA cells in the VTA of MSABA. However, the analysis of the orexin system revealed a similar cellular increment in the LHA in the non-separated ABA groups of both sexes. Regarding 5-HT, there was an opposite effect in males and females of the MSABA groups, with only females showing a greater density of 5-HT cells. The changes in the reward system could partially explain the behavioral data: the hyperactivity, weight loss, and decreased anxiety levels of the MSABA females could be linked to an increase in DA and 5-HT cells, whereas in males, MS could mitigate the behavioral effects of the ABA protocol affecting the anxiety levels and locomotor activity through a lack of increased activation of the reward system.


Assuntos
Anorexia , Privação Materna , Recompensa , Animais , Anorexia/complicações , Ansiedade/complicações , Modelos Animais de Doenças , Dopamina , Núcleo Dorsal da Rafe/citologia , Feminino , Masculino , Neurônios , Orexinas , Parte Compacta da Substância Negra/citologia , Ratos , Serotonina , Área Tegmentar Ventral/citologia
3.
Metabolites ; 11(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357343

RESUMO

The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.

4.
Metabolites ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207679

RESUMO

In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs) are environmental contaminants that alter the endocrine system causing adverse health effects in an intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for four months with a phytoestrogen-free diet containing two different concentrations of bisphenol A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in the VMH the NPY system was affected whereas no POMC immunoreactive material was observed. These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that control food intake and energy metabolism.

5.
Neuroscience ; 446: 238-248, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795557

RESUMO

Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and excessive weight loss. Several studies support the idea that life stressors during the postnatal period could play a pivotal role in the pathogenesis of AN, underlying the multifactorial etiology of this disease. The activity-based anorexia (ABA) animal model mimics core features of the mental disorder, including severe food restriction, weight loss, and hyperactivity. Previous results obtained in our lab showed that maternal separation (MS) induces behavioral changes in anorexic-like ABA rats in a sexually dimorphic way: in females, the MS promoted hyperactivity and a less anxious-like phenotype in ABA animals; in males, instead, the MS attenuated the anxiolytic effect of the ABA protocol. These results led us to investigate the effect of the MS on brain areas involved in the control of the anxiety-like behavior. We focused our attention on the adult hippocampal neurogenesis, a process involved in the response to environmental stimuli and stressful condition. We analyzed the volume of the whole hippocampus and the proliferation rate in the dentate gyrus (DG) by quantifying Ki67-cells density and characterizing neuronal phenotype (DCX) and glial cells (GFAP) with double-fluorescence technique. The results obtained showed that only in maternally separated anorexic rats there is an increase of proliferation in DG, underlying the presence of a synergic effect of MS and ABA that boost the proliferation of new neurons and glia progenitors in a more evident way in females in comparison to males.


Assuntos
Hipocampo , Privação Materna , Animais , Anorexia , Proliferação de Células , Giro Denteado , Proteína Duplacortina , Feminino , Masculino , Neurogênese , Ratos
6.
Dev Psychobiol ; 62(3): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31502241

RESUMO

Exposure to negative events during the neonatal period is one of the leading factors contributing to the development of psychiatric disorders, including anorexia nervosa. In this study, we investigated the effects of maternal separation (MS) on the development of anorexia in rodents using the mild-stress form of the activity-based anorexia (ABA) model (2 hr of free access to a running wheel and a 1-hr feeding test) in both male and female rats. We assessed anxiety-like and locomotor behavior and hyperactivity with the open field and elevated plus maze tests. Our results showed that ABA rats of both sexes displayed hyperactive behavior associated with reduced anxiety-like behavior when compared to controls. However, a sexually dimorphic effect of MS emerged in anorexic rats: while the females exposed to MS + ABA were hyperactive with diminished anxiety-related behaviors compared to females of the ABA group, MS in males attenuated or did not alter the effects of the ABA protocol. In conclusion, our data reveal that the synergistic effects of MS and ABA on physical activity and anxiety-like behavior act in opposite directions in the two sexes.


Assuntos
Anorexia Nervosa/fisiopatologia , Anorexia/fisiopatologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Privação Materna , Atividade Motora/fisiologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
7.
Environ Health Perspect ; 127(10): 107011, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31652106

RESUMO

BACKGROUND: The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. OBJECTIVE: We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. METHODS: Pregnant CD1 female mice were orally administered BPA at 5, 10, or 40µg/kg body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. RESULTS: Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; 5mg/kg BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses (5µg/kg BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. CONCLUSIONS: Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.


Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Kisspeptinas/metabolismo , Fenóis/toxicidade , Maturidade Sexual/efeitos dos fármacos , Animais , Disruptores Endócrinos , Feminino , Camundongos , Neurônios/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Maturidade Sexual/fisiologia
8.
Brain Res ; 1724: 146434, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491419

RESUMO

As demonstrated in previous studies, early postnatal genistein (GEN) administration to mice pups of both sexes, at doses similar to that of infant soy-based formulas, may affect the development of some steroid-sensitive neuronal circuits (i.e. nitrergic and vasopressinergic systems), causing irreversible alterations in adults. Here, we investigated the hypothalamic and mesencephalic dopaminergic system (identified with tyrosine hydroxylase immunohistochemistry). GEN administration (50 mg/kg) to mice of both sexes during the first week of postnatal life specifically affected tyrosine hydroxylase immunohistochemistry in the hypothalamic subpopulation of neurons, abolishing their sexual dimorphism. On the contrary, we did not observe any effects in the mesencephalic groups. Due to the large involvement of dopamine in circuits controlling rodent sexual behavior and food intake, these results clearly indicate that the early postnatal administration of GEN may irreversibly alter the control of reproduction, of energetic metabolism, and other behaviors. These results suggest the need for a careful evaluation of the use of soy products in both human and animal newborns.


Assuntos
Genisteína/farmacologia , Diferenciação Sexual/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Dopamina/fisiologia , Feminino , Genisteína/efeitos adversos , Genisteína/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/fisiologia , Masculino , Mesencéfalo/metabolismo , Camundongos , Neurônios/fisiologia , Fitoestrógenos , Caracteres Sexuais , Glycine max , Tirosina 3-Mono-Oxigenase
9.
Int J Mol Sci ; 20(10)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109056

RESUMO

Developmental actions of estradiol in the hypothalamus are well characterized. This hormone generates sex differences in the development of hypothalamic neuronal circuits controlling neuroendocrine events, feeding, growth, reproduction and behavior. In vitro, estradiol promotes sexually dimorphic effects on hypothalamic neuritogenesis. Previous studies have shown that developmental actions of the phytoestrogen genistein result in permanent sexually dimorphic effects in some behaviors and neural circuits in vivo. In the present study, we have explored if genistein, like estradiol, affects neuritogenesis in primary hypothalamic neurons and investigated the estrogen receptors implicated in this action. Hypothalamic neuronal cultures, obtained from male or female embryonic day 14 (E14) CD1 mice, were treated with genistein (0.1 µM, 0.5 µM or 1 µM) or vehicle. Under basal conditions, female neurons had longer primary neurites, higher number of secondary neurites and higher neuritic arborization compared to male neurons. The treatment with genistein increased neuritic arborization and the number of primary neurites and decreased the number of secondary neurites in female neurons, but not in male neurons. In contrast, genistein resulted in a significant increase in primary neuritic length in male neurons, but not in female neurons. The use of selective estrogen receptor antagonists suggests that estrogen receptor α, estrogen receptor ß and G-protein-coupled estrogen receptors are involved in the neuritogenic action of genistein. In summary, these findings indicate that genistein exerts sexually dimorphic actions on the development of hypothalamic neurons, altering the normal pattern of sex differences in neuritogenesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Caracteres Sexuais , Animais , Biomarcadores , Feminino , Masculino , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo
10.
Cell Tissue Res ; 374(3): 587-594, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30078105

RESUMO

Tributyltin (TBT), an antifouling agent found in boat paints, is a common contaminant of marine and freshwater ecosystems. It is rapidly absorbed by organic materials and accumulated in many aquatic animals. Human exposure may depend on ingestion of contaminated food or by indirect exposure from household items containing organotin compounds. TBT is defined as an endocrine disruptor compound (EDC) because it binds to androgen receptors. Moreover, it is also included on the list of metabolic disruptors. The brain is a known target of TBT and this compound interferes with the orexigenic system, inducing a strong decrease in NPY expression in the hypothalamus. In the present experiment, we investigated the effect of a chronic treatment with TBT on the mouse anorexigenic system in both sexes, to look at the pro-opiomelanocortin (POMC) expression in the paraventricular (PVN), dorsomedial (DMN), ventromedial (VMN), and arcuate (ARC) hypothalamic nuclei. The results show a sexually dimorphic effect of TBT on both systems. TBT induced a significant decrease of POMC-positive structures only in female mice in DMN, ARC, and in PVN for both sexes. Apparently, these results show that TBT may interfere with the anorexigenic system in hypothalamic areas involved in the control of food intake, by inhibiting POMC in a sexually dimorphic way. In conclusion, in addition to having a direct effect on fat tissue, the effects of TBT as metabolic disruptor, may be due to gender-specific actions on both orexigenic and anorexigenic hypothalamic systems.


Assuntos
Envelhecimento/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Caracteres Sexuais , Compostos de Trialquitina/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Aumento de Peso/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29686651

RESUMO

The forebrain ventricular-subventricular zone (V-SVZ) continuously generates new neurons throughout life. Neural stem cells (type B1 cells) along the lateral ventricle become activated, self-renew, and give rise to proliferating precursors which progress along the neurogenic lineage from intermediate progenitors (type C cells) to neuroblasts (type A cells). Neuroblasts proliferate and migrate into the olfactory bulb and differentiate into different interneuronal types. Multiple factors regulate each step of this process. Newly generated olfactory bulb interneurons are an important relay station in the olfactory circuits, controlling social recognition, reproductive behavior, and parental care. Those behaviors are strongly sexually dimorphic and changes throughout life from puberty through aging and in the reproductive age during estrous cycle and gestation. Despite the key role of sex hormones in regulating those behaviors, their contribution in modulating adult neurogenesis in V-SVZ is underestimated. Here, we compare the literature highlighting the sexual dimorphism and the differences across the physiological phases of the animal for the different cell types and steps through the neurogenic lineage.

12.
Brain Res ; 1688: 8-14, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555237

RESUMO

The kisspeptin system is clustered in two main groups of cell bodies (the periventricular region, RP3V and the arcuate nucleus, ARC) that send fibers mainly to the GnRH neurons and in a few other locations, including the paraventricular nucleus, PVN. In physiological conditions, gonadal hormones modulate the kisspeptin system with expression changes according to different phases of the estrous cycle: the highest being in estrus phase in RP3V and PVN (positive feedback), and in ARC during the diestrus phase (negative feedback). In this work we wanted to study these hormonal fluctuations during the estrous cycle, investigating the role played by progesterone (P) or estradiol (E2), alone or together, on the kisspeptin system. Gonadectomized CD1 female mice were treated with P, E2 or both (E2 + P), following a timing of administration that emulates the different phases of estrous cycle, for two cycles of 4 days. As expected, the two cell groups were differentially affected by E2; the RP3V group was positively influenced by E2 (alone or with the P), whereas in the ARC the administration of E2 did not affect the system. However P (alone) induced a rise in the kisspeptin immunoreactivity. All the treatments significantly affected the kisspeptin innervation of the PVN, with regional differences, suggesting that these fibers arrive from both RP3V and ARC nuclei.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Ciclo Estral , Kisspeptinas/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Progesterona/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/administração & dosagem , Feminino , Camundongos , Ovariectomia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Progesterona/administração & dosagem
13.
Artigo em Inglês | MEDLINE | ID: mdl-30687229

RESUMO

The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits. Here, we discuss data showing how the exposure to some MDCs can alter the expression of neuropeptides within the hypothalamic circuits involved in food intake and energy metabolism. In particular, in this review we have described the effects at hypothalamic level of three known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing of many consumer plastic products), and Tributyltin chloride (one of the most dangerous and toxic endocrine disruptor, used in antifouling paint for boats).

14.
J Anat ; 230(6): 775-786, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295274

RESUMO

The hypothalamic paraventricular nucleus (PVN) is the major autonomic output area of the hypothalamus and a critical regulatory center for energy homeostasis. The organism's energetic balance is very important for both the regular onset of puberty and regulation of fertility. Several studies have suggested a relationship among neural circuits controlling food intake, energy homeostasis and the kisspeptin peptide. The kisspeptin system is clustered in two main groups of cell bodies [the anterior ventral periventricular region (AVPV) and the arcuate nucleus (ARC)] projecting mainly to gonadotropin-releasing hormone (GnRH) neurons and to a few other locations, including the PVN. In the present study, we investigated the distribution of the kisspeptin fibers within the PVN of adult CD1 mice. We observed a significant sexual dimorphism for AVPV and ARC, as well as for the PVN innervation. Kisspeptin fibers showed a different density within the PVN, being denser in the medial part than in the lateral one; moreover, in female, the density changed, according to different phases of the estrous cycle (the highest density being in estrus phase). The presence of a profound effect of estrous cycle on the kisspeptin immunoreactivity in AVPV (with a higher signal in estrus) and ARC, and the strong co-localization between kisspeptin and NkB only in ARC and not in PVN suggested that the majority of the kisspeptin fibers found in the PVN might arise directly from AVPV.


Assuntos
Ciclo Estral/metabolismo , Kisspeptinas/metabolismo , Neurônios Aferentes/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Caracteres Sexuais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Masculino , Camundongos
15.
Sci Rep ; 6: 36063, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782186

RESUMO

Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits.


Assuntos
Neurogênese , Bulbo Olfatório/metabolismo , Comportamento Sexual Animal , Testosterona/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Masculino , Camundongos , Camundongos Knockout , Semaforinas/genética , Semaforinas/metabolismo , Testosterona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...