Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1527, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318333

RESUMO

Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report substantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm-²·kyr-1 for K, Mg and Al, 16 ± 9 mmol·cm-²·kyr-1 for Si and 6 ± 3 mmol·cm-²·kyr-1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0-200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr-1 of K, Mg and Al, and ~0.1-0.4 Tmol·yr-1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth's history, in particular during 'greenhouse' periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments.


Assuntos
Sedimentos Geológicos , Minerais , Argila
2.
Chemosphere ; 299: 134383, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339531

RESUMO

Climate change is leading to global sea level rise. Storm surges and higher tides will generate short-term 'pulses' of seawater into freshwater systems, often for the first time in over 3000 years. The effect of increased seawater inundation upon soil geochemistry is poorly understood. We identified 12 sites in South Australia which are predicted to be inundated by seawater storm surges in the next 20 years. Within these 12 sites are three distinct environments; fresh water streams and lakes, hypersaline saltmarsh and mangroves, and acid sulfate soils. Soils were inundated with seawater under laboratory conditions to replicate a short-term (two weeks) inundation by a storm surge. Lowering of redox potential and dissolution of high concentrations of reactive Mn and Fe in freshwater environments lead to the release of dissolved Fe and Mn in the soils from freshwater environments. Soils also released As, Cu, Ni, Cd and Co, while Zn and Pb were less mobilised. Concentrations of metals released exceeded water quality guidelines to protect freshwater aquatic ecosystems in most cases. By comparison, hypersaline soils only released minor amounts of Mn, Fe, Cd and Ni, and only in some of the soils. The moderately acidic acid sulfate soil (pH 5.41) reductively dissolved Mn and Fe releasing significant amount of Fe and Mn as well as As, Cu, Ni, Cd and Co, whereas almost all metal species decreased in the porewaters of the strongly acidic acid sulfate soil (pH 2.77). The response to short-term seawater inundation in acid sulfate soils was dependent upon the baseline soil acidification status. This study highlights the need for further research on seawater inundation of coastal soils as sea levels rise and storm surges penetrate further inland.


Assuntos
Metais Pesados , Poluentes do Solo , Ácidos , Cádmio/análise , Ecossistema , Água Doce , Metais/análise , Metais Pesados/análise , Água do Mar , Solo , Poluentes do Solo/análise , Sulfatos
3.
Sci Total Environ ; 806(Pt 2): 150565, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582867

RESUMO

The distribution of cadmium (Cd) within the oceans strongly suggests that it is used as a nutrient by marine phytoplankton. Biologically induced removal of Cd from modern surface waters is accompanied by an isotopic fractionation leaving surface-waters enriched in isotopically heavy Cd. This first study focusses on tying the Cd isotopic record preserved in modern shallow platform carbonates of the Great Bahama Bank (GBB) to conditions in the upper water column, and provides a base for future studies aiming at reconstructing past bioproductivity levels in ancient ocean/basin surface waters. In addition, we compare δ114Cd values with previously published chromium (Cr) isotope values and link signals of bioproductivity with redox conditions in the surface waters. The GBB core samples yield [Cd] (21-188 µg/kg), which increases with depth alongside changes in carbonate mineralogy related to sediment supply and diagenesis. The δ114Cd values of these carbonates are mainly positively fractionated with an average of 0.11‰ ± 0.17 (2σ; n = 17) relative to the NIST 3108 reference standard. Unlike previously observed for Cr isotopes, there is no control of δ114Cd values by relative abundances of the carbonate polymorphs aragonite and calcite in the studied profile. Likewise, δ114Cd values are not correlated to major and trace element (e.g. Ca, Mg, Mn and Sr) contents. We postulate that the burial and diagenetic processes of carbonate cannot modify the Cd isotope signals. Using the experimental fractionation factor for Cd into calcite (-0.45‰), calculated seawater δ114Cd of +0.56 ± 0.17‰ is in agreement with values for modern North Atlantic Surface Seawater. This study's results suggest that δ114Cd values in carbonates are a reliable tool for reconstruction of bioproductivity levels in past surface seawaters, and open new possibilities in combination with Cr isotopes to link these with past ocean redox.


Assuntos
Cádmio , Água , Bahamas , Cádmio/análise , Isótopos de Carbono , Carbonatos , Isótopos do Cromo/análise , Isótopos
4.
Talanta ; 235: 122708, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517581

RESUMO

Conventional sulfur isotope measurements in complex natural liquid or solid samples via GS-IRMS are complicated, time consuming and relatively expensive. Here we assessed a novel 'collision cell' based ICP-MS/MS approach which can determine the sulfur isotope abundances (i.e., 34S/32S ratios, expressed as δ34S) in complex coastal waters rapidly, accurately and with minimal sample preparation. The approach was validated via repeated ICP-MS/MS measurement of S isotope certified reference materials (CRM) providing accurate and reproducible results, with a typical uncertainty on δ34S of around 1.1-1.5‰ (1SD). This novel approach is suitable for water samples with sulfur concentrations at or above 2 µg/mL (ppm). Matrix matching between samples and the CRM was necessary when seawater-like solutions were analysed addressing common matrix related errors. The ICP-MS/MS approach was used to investigate δ34S signature of porewaters from a variety of coastal systems in South Australia (including acid sulfate soils), and how they responded to progressive seawater inundation. Importantly, inundation induced a shift in S isotope ratio in affected porewaters in which δ34S approached that of seawater. The simple sample preparation, with rapid and accurate δ34S determination of complex natural waters using the ICP MS/MS approach, greatly increases the applicability of sulfur isotope tracing studies to identify and monitor sources and bio-geochemical pathways of S in coastal and near-surface environments.


Assuntos
Água do Mar , Espectrometria de Massas em Tandem , Isótopos , Enxofre , Isótopos de Enxofre/análise
5.
PLoS One ; 15(11): e0242915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253305

RESUMO

Magnesium isotope ratios (26Mg/24Mg) can provide insights into the origin of Mg pools and fluxes in catchments where Mg sources have distinct isotope compositions, and the direction and magnitude of Mg isotope fractionations are known. Variability in Mg isotope compositions was investigated in three small, spruce-forested catchments in the Czech Republic (Central Europe) situated along an industrial pollution gradient. The following combinations of catchment characteristics were selected for the study: low-Mg bedrock + low Mg deposition (site LYS, underlain by leucogranite); high-Mg bedrock + low Mg deposition (site PLB, underlain by serpentinite), and low-Mg bedrock + high Mg deposition (site UDL, underlain by orthogneiss). UDL, affected by spruce die-back due to acid rain, was the only investigated site where dolomite was applied to mitigate forest decline. The δ26Mg values of 10 catchment compartments were determined on pooled subsamples. At LYS, a wide range of δ26Mg values was observed across the compartments, from -3.38 ‰ (bedrock) to -2.88 ‰ (soil), -1.48% (open-area precipitation), -1.34 ‰ (throughfall), -1.19 ‰ (soil water), -0.99 ‰ (xylem), -0.95 ‰ (needles), -0.82 ‰ (bark), -0.76 ‰ (fine roots), and -0.76 ‰ (runoff). The δ26Mg values at UDL spanned 1.32 ‰ and were thus less variable, compared to LYS. Magnesium at PLB was isotopically relatively homogeneous. The δ26Mg systematics was consistent with geogenic control of runoff Mg at PLB. Mainly atmospheric/biological control of runoff Mg was indicated at UDL, and possibly also at LYS. Our sites did not exhibit the combination of low-δ26Mg runoff and high-δ26Mg weathering products (secondary clay minerals) reported from several previously studied sites. Six years after the end of liming at UDL, Mg derived from dolomite was isotopically undetectable in runoff.


Assuntos
Monitoramento Ambiental , Magnésio/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Chuva Ácida , Carbonato de Cálcio/química , República Tcheca/epidemiologia , Poluição Ambiental/prevenção & controle , Europa (Continente) , Humanos , Isótopos/química , Magnésio/química , Solo/química , Poluentes do Solo/química , Árvores/química , Poluentes Químicos da Água/química
6.
Sci Rep ; 9(1): 5200, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914671

RESUMO

Precambrian hydrocarbons and their corresponding source rocks are distinctly different from their Phanerozoic counterparts, having been deposited in persistently anoxic environments in ecosystems dominated by bacteria. Here, we show that cyclic enrichment of organic matter in the world's oldest hydrocarbon play (ca. 1.38 Ga), is not associated with flooding surfaces and is unrelated to variations in mineralogy or changes in the relative rate of clastic to biogenic sedimentation-factors typically attributed to organic enrichment in Phanerozoic shales. Instead, the cyclic covariation of total organic carbon, δ15N, δ13C and molybdenum are explained by the feedback between high levels of primary productivity, basin redox and the biogeochemical nitrogen cycle. These factors are important in constraining productivity in the marine biosphere, the development of Precambrian hydrocarbon source rocks, and more generally in understanding oxygenation of the ocean and atmosphere through Earth history; as all are ultimately related to organic carbon burial.

7.
Environ Pollut ; 218: 1135-1146, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613315

RESUMO

Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ65Cu and δ66Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ65Cu and δ66Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ65Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ65Cu value of pollution sources (-1.17‰). The variability in δ65Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ66Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ66Zn value of pollution sources (-0.23‰). The variability in δ66Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe.


Assuntos
Poluição do Ar , Cobre , Neve/química , Zinco , Cobre/análise , Cobre/química , República Tcheca , Monitoramento Ambiental , Europa (Continente) , Gelo , Isótopos/análise , Zinco/análise , Zinco/química
8.
Environ Sci Technol ; 48(11): 6089-96, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24779992

RESUMO

Carcinogenic effects of hexavalent chromium in waters are of concern in many countries worldwide. We explored Cr isotope systematics at 11 sites in the Czech Republic and Poland. Geogenic Cr pollution was associated with serpentinite bodies at former convergent plate margins, while anthropogenic Cr pollution resulted from electroplating, tanning, and the chemical industry. Cr(VI) concentration in geogenic waters was less than 40 ppb. Anthropogenic waters contained up to 127,000 ppb Cr(VI). At both geogenic and anthropogenic sites, where known, the source of pollution had a low δ53Cr (<1‰). δ53Cr of geogenic and anthropogenic waters was up to 3.9 and 5.8‰, respectively. At both serpentinite-dominated and industrial sites, δ53Cr(VI)aq was shifted toward higher values, compared to the pollution source. At the industrial sites, this positive δ53Cr shift was related to Cr(VI) reduction, a process known to fractionate Cr isotopes. At geogenic sites, the origin of high δ53Cr(VI)aq is tentatively ascribed to preferential release of 53Cr during oxidation of soil Cr(III) and its mobilization to water. δ53Cr(VI) of industrially contaminated waters was significantly higher (p<0.001) compared to δ53Cr of waters carrying geogenic Cr(VI), implying that either the effective fractionation factor or process extent was greater for Cr(VI) reduction than for Cr(III) oxidation.


Assuntos
Isótopos do Cromo/análise , Cromo/análise , Poluição Ambiental/análise , Resíduos Industriais/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Cromo/química , Isótopos do Cromo/química , República Tcheca
9.
J Hazard Mater ; 209-210: 40-7, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22277334

RESUMO

The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues.


Assuntos
Poluição do Ar , Cádmio/isolamento & purificação , Chumbo/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Árvores/química , Zinco/isolamento & purificação , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...