Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(18): 10313-10328, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976585

RESUMO

Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a RNA/química , Transcrição Gênica , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Inativação Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Agregados Proteicos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Vírus/genética
2.
Viruses ; 11(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791609

RESUMO

Viruses are a major threat to human health and economic well-being. In recent years Ebola, Zika, influenza, and chikungunya virus epidemics have raised awareness that infections can spread rapidly before vaccines or specific antagonists can be made available. Broad-spectrum antivirals are drugs with the potential to inhibit infection by viruses from different groups or families, which may be deployed during outbreaks when specific diagnostics, vaccines or directly acting antivirals are not available. While pathogen-directed approaches are generally effective against a few closely related viruses, targeting cellular pathways used by multiple viral agents can have broad-spectrum efficacy. Virus entry, particularly clathrin-mediated endocytosis, constitutes an attractive target as it is used by many viruses. Using a phenotypic screening strategy where the inhibitory activity of small molecules was sequentially tested against different viruses, we identified 12 compounds with broad-spectrum activity, and found a subset blocking viral internalisation and/or fusion. Importantly, we show that compounds identified with this approach can reduce viral replication in a mouse model of Zika infection. This work provides proof of concept that it is possible to identify broad-spectrum inhibitors by iterative phenotypic screenings, and that inhibition of host-pathways critical for viral life cycles can be an effective antiviral strategy.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Internalização do Vírus/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Células HeLa , Humanos , Concentração Inibidora 50 , Camundongos , RNA Viral/genética , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico
3.
J Virol Methods ; 244: 39-45, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274744

RESUMO

Although access to antiretroviral therapy for HIV infection is increasing in resource-poor countries, viral load testing for monitoring of treatment efficacy remains limited, expensive, and confined to centralized laboratories. The SAMBA HIV-1 Semi-Q Test is a nucleic acid-based amplification assay developed for viral load monitoring performed on either the semi-automated SAMBA I system for laboratory use or the fully automated SAMBA II system for point-of care use. We have assessed the performance characteristics of the SAMBA HIV-1 Semi-Q Test on SAMBA I and SAMBA II systems according to the Common Technical Specifications of the European Community's 98/79 In Vitro Diagnostic Medical Devices Directive. The sensitivity, specificity, reproducibility, and viral subtype coverage of the test were similar on the SAMBA I and SAMBA II platforms. The clinical performance on the SAMBA I system was compared with the Roche CAP/CTM assay and evaluated in-house with 130 patient specimens from London as well as in the field with 390 specimens in Kenya and Zimbabwe. The overall concordance between the SAMBA and CAP/CTM assays was 98.1%. The clinical performance of the test on the SAMBA II platform in comparison with the Abbott HIV-1 RealTime Assay was evaluated in-house with 150 specimens from Ukraine, yielding a concordance of 98.0%. The results thus show that the SAMBA HIV-1 Semi-Q Test performs equivalently on SAMBA I and SAMBA II, and they suggest that the test is suitable for implementation at the point-of-care in resource-poor regions where viral load testing is desperately needed but often unavailable.


Assuntos
Infecções por HIV/virologia , HIV-1/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Carga Viral/métodos , Automação Laboratorial/métodos , Humanos , Quênia , Londres , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ucrânia , Zimbábue
4.
ChemistryOpen ; 5(3): 227-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27551659

RESUMO

A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5'-O-tritylated and the 5'-O-dimethoxytritylated 5-fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5'O, N-bis-tritylated fludarabine derivative revealed strong inhibitory activity against DENV at µm concentrations, however significantly weaker potency against YFV.

5.
J Virol Methods ; 237: 143-149, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27568275

RESUMO

The SAMBA HIV-1 Qual Whole Blood Test is a nucleic acid-based amplification assay for the qualitative detection of HIV-1 in whole blood of adults or infants. The test can be run on either the semi-automated SAMBA I system for clinical use or the fully automated, including readout, SAMBA II system for point-of-care use in resource-limited settings. We have assessed the performance characteristics of the SAMBA HIV-1 Qual Whole Blood Test on SAMBA I and SAMBA II. The limit of detection obtained for the two tests were 518IU/ml and 399copies/ml on SAMBA I and 457IU/ml and 433copies/ml on SAMBA II. Test specificity on both systems was 100% with a panel of 503 HIV-1 negative samples. Evaluation of test reproducibility showed 100% concordance with expected gold standard results as well as 100% agreement between operators, days, and runs as well as within runs on both SAMBA I and SAMBA II. Our results thus show that the SAMBA HIV-1 Qual Whole Blood Test performs equivalently on SAMBA I and SAMBA II, and also suggest that the test is suitable for implementation in medium-throughput clinical facilities (SAMBA I) or low-throughput point-of-care (POC) settings (SAMBA II) in resource-poor regions.


Assuntos
Infecções por HIV/diagnóstico , HIV-1/genética , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Diagnóstico Precoce , Infecções por HIV/virologia , Humanos , Lactente , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/normas , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Viremia/diagnóstico , Viremia/virologia
6.
PLoS One ; 9(2): e88734, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558417

RESUMO

Molluscum contagiosum virus (MCV) is a significant but underreported skin pathogen for children and adults. Seroprevalence studies can help establish burden of disease. Enzyme linked immunosorbent assay (ELISA) based studies have been published for Australian and Japanese populations and the results indicate seroprevalences between 6 and 22 percent in healthy individuals, respectively. To investigate seroprevalence in Europe, we have developed a recombinant ELISA using a truncated MCV virion surface protein MC084 (V123-R230) expressed in E. coli. The ELISA was found to be sensitive and specific, with low inter- and intra-assay variability. Sera from 289 German adults and children aged 0-40 years (median age 21 years) were analysed for antibodies against MC084 by direct binding ELISA. The overall seropositivity rate was found to be 14.8%. The seropositivity rate was low in children below the age of one (4.5%), peaked in children aged 2-10 years (25%), and fell again in older populations (11-40 years; 12.5%). Ten out of 33 healthy UK individuals (30.3%; median age 27 years) had detectable MC084 antibodies. MCV seroconversion was more common in dermatological and autoimmune disorders, than in immunocompromised patients or in patients with multiple sclerosis. Overall MCV seroprevalence is 2.1 fold higher in females than in males in a UK serum collection. German seroprevalences determined in the MC084 ELISA (14.8%) are at least three times higher than incidence of MC in a comparable Swiss population (4.9%). While results are not strictly comparable, this is lower than Australian seroprevalence in a virion based ELISA (n = 357; 23%; 1999), but higher than the seroprevalence reported in a Japanese study using an N-terminal truncation of MC133 (n = 108, 6%; 2000. We report the first large scale serological survey of MC in Europe (n = 393) and the first MCV ELISA based on viral antigen expressed in E. coli.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Vírus do Molusco Contagioso/isolamento & purificação , Adolescente , Adulto , Antígenos Virais/imunologia , Criança , Pré-Escolar , Clonagem Molecular , Escherichia coli/genética , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vírus do Molusco Contagioso/imunologia , Estudos Soroepidemiológicos , Solubilidade , Reino Unido , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia , Adulto Jovem
7.
J Med Chem ; 56(3): 1311-22, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320521

RESUMO

Dideoxy bicyclic pyrimidine nucleoside analogues (ddBCNAs) with d-chirality have previously been described by us to inhibit replication of human cytomegalovirus. We herein report for the first time that activity against vaccinia virus (VACV) was achieved using novel l-analogues. A structure-activity relationship was established: Antiviral activity versus VACV was highest with an ether side chain with an optimum of n-C(9)H(18)-O-n-C(5)H(11). This gave an IC(50) of 190 nM, a 60-fold enhancement over the FDA-approved antiviral cidofovir. Interestingly, l-ddBCNAs also inhibit wild type measles virus syncytia formation with a TCID(50) of 7.5 µM for the lead compound. We propose that l-ddBCNAs represent significant innovative antiviral candidates versus measles and poxviruses, and we suggest a mechanism of action versus one or more cellular targets that are essential for viral replication.


Assuntos
Antivirais/farmacologia , Vírus do Sarampo/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Antivirais/química , Células HeLa , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Vírus do Sarampo/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray , Vaccinia virus/crescimento & desenvolvimento , Ensaio de Placa Viral
8.
Methods Mol Biol ; 890: 135-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22688765

RESUMO

Molluscum contagiosum virus (MCV), a poxvirus pathogenic for humans, replicates well in human skin in vivo, but not in vitro in standard monolayer cell cultures. In order to determine the nature of the replication deficiency in vitro, the MCV infection process in standard culture has to be studied step by step. The method described in this chapter uses luciferase and GFP reporter constructs to measure poxviral mRNA transcription activity in cells in standard culture infected with known quantities of MCV or vaccinia virus. Briefly, MCV isolated from human tissue specimen is quantitated by PCR and used to infect human HEK293 cells, selected for ease of transfection. The cells are subsequently transfected with a reporter plasmid encoding firefly luciferase gene under the control of a synthetic early/late poxviral promoter and a control plasmid encoding a renilla luciferase reporter under the control of a eukaryotic promoter. After 16 h, cells are harvested and tested for expression of luciferase. MCV genome units are quantitated by PCR targeting a genome area conserved between MCV and vaccinia virus. Using a GFP reporter plasmid, this method can be further used to infect a series of epithelial and fibroblast-type cell lines of human and animal origin to microscopically visualize MCV-infected cells, to assess late promoter activation, and, using these parameters, to optimize MCV infectivity and gene expression in more complex eukaryotic cell culture models.


Assuntos
Vírus do Molusco Contagioso/patogenicidade , DNA Viral/genética , DNA Viral/isolamento & purificação , Expressão Gênica , Regulação Viral da Expressão Gênica , Genes Reporter , Genes Virais , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Vírus do Molusco Contagioso/genética , Vírus do Molusco Contagioso/isolamento & purificação , Vírus do Molusco Contagioso/fisiologia , Plasmídeos/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Vaccinia virus/genética , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/patogenicidade , Cultura de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...