Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(16): 2323-2326, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752070

RESUMO

Thermogalvanic devices can chemically convert low grade (<200 °C) waste thermal energy into electrical energy. A temperature gradient across the device drives an entropically favourable electrochemical redox reaction, resulting in continuous current production. The voltage correlates with the entropy change during the redox reaction, which favours high valence metal complexes with high charge densities. Here we investigate cobalt (II/III) sarcophagine ([Co(SAR)]2+/3+) for application in thermogalvanic cells, as a function of solvent; the two uncoordinated amine groups 1,8-diaminosarcophagine are typically protonated to form tetracationic/pentacationic [Co(SARH2)]4+/5+. In water, [Co(SARH2)]4+/5+ gave a thermogalvanic Seebeck coefficient (Se) of +0.43 mV K-1, which is entropically consistent with just the Co2+/3+ core valence, whereas DMSO and ionic liquid solvents gave Se values of +1.84 and +2.04 mV K-1, respectively, in line with the 'Co4+/5+' overall complex. This work proves how the ionic charge on pendant moieties can undergo charge-additivity with the metal core to significantly boost entropically-driven processes, but only in suitably low dielectric and bulky solvents.

2.
Bioconjug Chem ; 32(7): 1214-1222, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33724798

RESUMO

Positron Emission Tomography (PET) imaging with antibody-based contrast agents frequently uses the radioisotopes [64Cu]Cu2+ and [89Zr]Zr4+. The macrobicyclic chelator commonly known as sarcophagine (sar) is ideal for labeling receptor-targeted biomolecules with [64Cu]Cu2+. The siderophore chelator, desferrioxamine-B (dfo), has been widely used to incorporate [89Zr]Zr4+ into antibodies. Here, we describe new bifunctional chelators of sar and dfo: these chelators have been functionalized with dibromomaleimides (dbm), that enable site-specific and highly stable attachment of molecular cargoes to reduced, solvent-accessible, interstrand native disulfide groups. The new sar-dbm and dfo-dbm derivatives can be easily conjugated with the IgG antibody trastuzumab via reaction with reduced interstrand disulfide groups to give site-specifically modified dithiomaleamic acid (dtm) conjugates, sar-dtm-trastuzumab and dfo-dtm-trastuzumab, in which interstrand disulfides are rebridged covalently with a small molecule linker. Both sar- and dfo-dtm-trastuzumab conjugates have been radiolabeled with [64Cu]Cu2+ and [89Zr]Zr4+, respectively, in near quantitative radiochemical yield (>99%). Serum stability studies, in vivo PET imaging, and biodistribution analyses using these radiolabeled immunoconjugates demonstrate that both [64Cu]Cu-sar-dtm-trastuzumab and [89Zr]Zr-dfo-dtm-trastuzumab possess high stability in biological milieu. Dibromomaleimide technology can be easily applied to enable stable, site-specific attachment of radiolabeled chelators, such as sar and dfo, to native interstrand disulfide regions of antibodies, enabling tracking of antibodies with PET imaging.


Assuntos
Compostos de Bromo/química , Quelantes/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Animais , Humanos
3.
Front Phys ; 8: 126, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34113608

RESUMO

BACKGROUND: Multi-tracer PET/SPECT imaging enables different modality tracers to be present simultaneously, allowing multiple physiological processes to be imaged in the same subject, within a short time-frame. Fluorine-18 and technetium-99m, two commonly used PET and SPECT radionuclides, respectively, possess different emission profiles, offering the potential for imaging one in the presence of the other. However, the impact of the presence of each radionuclide on scanning the other could be significant and lead to confounding results. Here we use combinations of 18F and 99mTc to explore the challenges posed by dual tracer PET/SPECT imaging, and investigate potential practical ways to overcome them. METHODS: Mixed-radionuclide 18F/99mTc phantom PET and SPECT imaging experiments were carried out to determine the crossover effects of each radionuclide on the scans using Mediso nanoScan PET/CT and SPECT/CT small animal scanners. RESULTS: PET scan image quality and quantification were adversely affected by 99mTc activities higher than 100 MBq due to a high singles rate increasing dead-time of the detectors. Below 100 MBq 99mTc, PET scanner quantification accuracy was preserved. SPECT scan image quality and quantification were adversely affected by the presence of 18F due to Compton scattering of 511 keV photons leading to over-estimation of 99mTc activity and increased noise. However, 99mTc:18F activity ratios of > 70:1 were found to mitigate this effect completely on the SPECT. A method for correcting for Compton scatter was also explored. CONCLUSION: Suitable combinations of injection sequence and imaging sequence can be devised to meet specific experimental multi-tracer imaging needs, with only minor or insignificant effects of each radionuclide on the scan of the other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...