Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(22): 12739-12748, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34041516

RESUMO

The La2Mo2O9 and La2(MoO4)3 powders were synthesized using a solid-state reaction method and used to prepare dense ceramics. X-ray photoelectron spectroscopy was used to study the chemical composition and charge numbers of the elements in the subsurface area of dense ceramics of lanthanum molybdates. The spectra were measured under an ultra-high vacuum of 7 × 10-11 atm at 30 °C and 600 °C, and under an oxygen atmosphere at 2 × 10-3 atm at 600 °C and 825 °C. High resolution spectra for La 3d, Mo 3d and O 1s states were obtained and analyzed. The kinetics of oxygen exchange were considered in the framework of a two-step model including the consecutive steps of dissociative adsorption and the incorporation of oxygen. The oxygen adsorption (ra) and incorporation (ri) rates were calculated. Correlations between the oxide surface defect chemistry and the rates of individual oxygen-exchange steps were discussed.

2.
Phys Chem Chem Phys ; 21(44): 24740-24748, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31681940

RESUMO

Oxygen surface exchange and diffusion in Ca12Al14O33±Î´ single crystal were studied by a unique in situ method based on isotope equilibration in the gas phase. Although the interphase exchange rate and oxygen diffusion coefficient demonstrate good agreement with available data, only the employed method is efficient to isolate the contributions of various types of exchange; thus, for the first time, it is possible to estimate the surface heterogeneity of mayenite. The obtained results disprove conclusions previously developed in the literature; the temperature region of 750 °C to 850 °C is not the intermediate region where two types of oxygen diffusion coexist. Complex discussion of the accumulated information on the temperature-dependent properties of mayenite allowed us to represent a model describing the observed dependencies based on the near-surface layer stability in the studied temperature range.

3.
Materials (Basel) ; 12(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405042

RESUMO

This paper presents the results of a comparative study of methods to prevent the loss of barium during the formation of thin-film proton-conducting electrolyte BaCe0.89Gd0.1Cu0.01O3-δ (BCGCuO) on La2NiO4+δ-based (LNO) cathode substrates by electrophoretic deposition (EPD). Three different methods of the BCGCuO film coating were considered: the formation of the BCGCuO electrolyte film without (1) and with a protective BaCeO3 (BCO) film (2) on the LNO electrode substrate and the formation of the BCGCuO electrolyte film on a modified La1.7Ba0.3NiO4+δ (LBNO) cathode substrate (3). After the cyclic EPD in six stages, the resulting BCGCuO film (6 µm) (1) on the LNO substrate was completely dense, but the scanning electron microscope (SEM) analysis revealed the absence of barium in the film caused by its intensive diffusion into the substrate and evaporation during the sintering. The BCO layer prevented the barium loss in the BCGCuO film (2); however, the protective film possessed a porous island structure, which resulted in the deterioration of the film's conductivity. The use of the modified LBNO cathode also effectively prevented the loss of barium in the BCGCuO film (3). A BCGCuO film whose conductivity behavior most closely resembled that of the compacts was obtained by using this method which has strong potential for practical applications in solid oxide fuel cell (SOFC) technology.

4.
Materials (Basel) ; 12(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295827

RESUMO

In this study, oxide materials La1-xCaxScO3-α (x = 0.03, 0.05 and 0.10) were synthesized by the citric-nitrate combustion method. Single-phase solid solutions were obtained in the case of calcium content x = 0.03 and 0.05, whereas a calcium-enriched impurity phase was found at x = 0.10. Water uptake and release were studied by means of thermogravimetric analysis, thermodesorption spectroscopy and dilatometry. It was shown that lower calcium content in the main phase leads to a decrease in the water uptake. Conductivity was measured by four-probe direct current (DC) and two-probe ascension current (AC) methods at different temperatures, pO2 and pH2O. The effects of phase composition, microstructure and defect structure on electrical conductivity, as well as correlation between conductivity and water uptake experiments, were discussed. The contribution of ionic conductivity of La1-xCaxScO3-α rises with decreasing temperature and increasing humidity. The domination of proton conductivity at temperatures below 500 °C under oxidizing and reducing atmospheres is exhibited. Water uptake and release as well as transport properties of La1-xCaxScO3-α are compared with the properties of similar proton electrolytes, La1-xSrxScO3-α, and the possible reasons for their differences were discussed.

5.
Phys Chem Chem Phys ; 21(9): 4779-4790, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30766979

RESUMO

Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±Î´ have been investigated using two methods: pulsed isotope exchange (PIE) and oxygen isotope exchange with gas phase equilibration (IE GPE). Oxygen surface exchange kinetics is considered in the framework of two-step models including two consecutive stages: dissociative adsorption of oxygen and incorporation of oxygen adatoms into the crystal lattice. The rates of oxygen heterogeneous exchange (rH) as well as the rates of dissociative adsorption (ra) and oxygen incorporation (ri) have been calculated. The applicability of the two-step model is discussed based on the concept of a novel two-step mechanism with distributed rates of dissociative adsorption and incorporation of oxygen. It is shown that the two-step model can be applicable for the description of oxygen exchange kinetics in Pr1.75Sr0.25Ni0.75Co0.25O4±Î´ only at temperatures below 750 °C. Above this temperature, only the statistical model with distributed rates can be used. At low temperatures (<750 °C), the oxygen incorporation rate is found to be smaller than the rate of oxygen dissociative adsorption. Thus, under these experimental conditions the stage of oxygen incorporation is considered to be rate-determining. When increasing the temperature, the difference between ra and ri decreases and the stages become competing. The oxygen isotope exchange kinetic profiles obtained using the IE GPE method are found to be complicated and include a surface exchange stage as well as at least two diffusion relaxation processes. The reasons for the existence of these two processes are discussed.

6.
Materials (Basel) ; 12(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602702

RESUMO

Reversible protonic ceramic cells (rPCCs) combine two different operation regimes, fuel cell and electrolysis cell modes, which allow reversible chemical-to-electrical energy conversion at reduced temperatures with high efficiency and performance. Here we present novel technological and materials science approaches, enabling a rPCC with symmetrical functional electrodes to be prepared using a single sintering step. The response of the cell fabricated on the basis of P⁻N⁻BCZD|BCZD|PBN⁻BCZD (where BCZD = BaCe0.5Zr0.3Dy0.2O3-δ, PBN = Pr1.9Ba0.1NiO4+δ, P = Pr2O3, N = Ni) is studied at different temperatures and water vapor partial pressures (pH2O) by means of volt-ampere measurements, electrochemical impedance spectroscopy and distribution of relaxation times analyses. The obtained results demonstrate that symmetrical electrodes exhibit classical mixed-ionic/electronic conducting behavior with no hydration capability at 750 °C; therefore, increasing the pH2O values in both reducing and oxidizing atmospheres leads to some deterioration of their electrochemical activity. At the same time, the electrolytic properties of the BCZD membrane are improved, positively affecting the rPCC's efficiency. The electrolysis cell mode of the rPCC is found to be more appropriate than the fuel cell mode under highly humidified atmospheres, since its improved performance is determined by the ohmic resistance, which decreases with pH2O increasing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA