Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 77: 101792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633515

RESUMO

OBJECTIVE: To adapt to metabolically challenging environments, the central nervous system (CNS) orchestrates metabolism of peripheral organs including skeletal muscle. The organ-communication between the CNS and skeletal muscle has been investigated, yet our understanding of the neuronal pathway from the CNS to skeletal muscle is still limited. Neurons in the dorsomedial and central parts of the ventromedial hypothalamic nucleus (VMHdm/c) expressing steroidogenic factor-1 (VMHdm/cSF-1 neurons) are key for metabolic adaptations to exercise, including increased basal metabolic rate and skeletal muscle mass in mice. However, the mechanisms by which VMHdm/cSF-1 neurons regulate skeletal muscle function remain unclear. Here, we show that VMHdm/cSF-1 neurons increase the sympathoadrenal activity and regulate skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) in mice via multiple downstream nodes. METHODS: Optogenetics was used to specifically manipulate VMHdm/cSF-1 neurons combined with genetically-engineered mice and surgical manipulation of the sympathoadrenal activity. RESULTS: Optogenetic activation of VMHdm/cSF-1 neurons dramatically elevates mRNA levels of skeletal muscle Pgc-1α, which regulates a spectrum of skeletal muscle function including protein synthesis and metabolism. Mechanistically, the sympathoadrenal drive coupled with ß2 adrenergic receptor (ß2AdR) is essential for VMHdm/cSF-1 neurons-mediated increases in skeletal muscle PGC1-α. Specifically, both adrenalectomy and ß2AdR knockout block augmented skeletal muscle PGC1-α by VMHdm/cSF-1 neuronal activation. Optogenetic functional mapping reveals that downstream nodes of VMHdm/cSF-1 neurons are functionally redundant to increase circulating epinephrine and skeletal muscle PGC1-α. CONCLUSIONS: Collectively, we propose that VMHdm/cSF-1 neurons-skeletal muscle pathway, VMHdm/cSF-1 neurons→multiple downstream nodes→the adrenal gland→skeletal muscle ß2AdR, underlies augmented skeletal muscle function for metabolic adaptations.


Assuntos
Condicionamento Físico Animal , Camundongos , Animais , Condicionamento Físico Animal/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Músculo Esquelético/metabolismo , Núcleo Hipotalâmico Ventromedial
2.
Front Endocrinol (Lausanne) ; 11: 588447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071988

RESUMO

Leptin is a potent endocrine hormone produced by adipose tissue and regulates a broad range of whole-body metabolism such as glucose and lipid metabolism, even without insulin. Central leptin signaling can lower hyperglycemia in insulin-deficient rodents via multiple mechanisms, including improvements of dyslipidemia. However, the specific neurons that regulate anti-dyslipidemia effects of leptin remain unidentified. Here we report that leptin receptors (LEPRs) in neurons expressing Cre recombinase driven by a short fragment of a promoter region of Ins2 gene (RIP-Cre25Mgn neurons) are required for central leptin signaling to reverse dyslipidemia, thereby hyperglycemia in insulin-deficient mice. Ablation of LEPRs in RIP-Cre25Mgn neurons completely blocks glucose-lowering effects of leptin in insulin-deficient mice. Further investigations reveal that insulin-deficient mice lacking LEPRs in RIP-Cre25Mgn neurons (RIP-CreΔLEPR mice) exhibit greater lipid levels in blood and liver compared to wild-type controls, and that leptin injection into the brain does not suppress dyslipidemia in insulin-deficient RIP-CreΔLEPR mice. Leptin administration into the brain combined with acipimox, which lowers blood lipids by suppressing triglyceride lipase activity, can restore normal glycemia in insulin-deficient RIP-CreΔLEPR mice, suggesting that excess circulating lipids are a driving-force of hyperglycemia in these mice. Collectively, our data demonstrate that LEPRs in RIP-Cre25Mgn neurons significantly contribute to glucose-lowering effects of leptin in an insulin-independent manner by improving dyslipidemia.


Assuntos
Dislipidemias/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Insulina/deficiência , Integrases/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Receptores para Leptina/fisiologia , Animais , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/patologia , Glucose/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...