Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14484, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914713

RESUMO

Among the myriad of nanoparticles, silica nanoparticles (SiO2NPs) have gained significant attention since they are extensively produced and used across several kinds of industries. Because of its widespread usage, there has been increasing concern about the potential health effects. This study aims to evaluate the effects of SiO2NPs on Interleukin-6 (IL-6) gene expression in human lung epithelial cell lines (A549). In this study, A549 cells were exposed to SiO2NPs at concentrations of 0, 1, 10, 50, 100, and 200 µg/mL for 24 and 48 h. The IL-6 gene expression was assessed using Real-Time RT-PCR. Additionally, the impact of SiO2NPs on the viability of A549 cells was determined by MTT assay. Statistical analysis was performed using GraphPad Prism software 8.0. MTT assay results indicated a concentration-dependent impact on cell survival. After 24 h, survival decreased from 80 to 68% (1-100 µg/mL), rising to 77% at higher concentrations. After 48 h, survival dropped from 97 to 80%, decreasing to 90% at higher concentrations. RT-PCR showed a dose-response relationship in cellular toxicity up to 10 µg/mL. At higher concentrations, there was increased IL-6 gene expression, mitigating SiO2NP-induced cytotoxic effects. The study shows that the viability and proliferation of A549 cells are impacted by different SiO2NPs concentrations. There may be a potential correlation between IL-6 gene expression reduction and a mechanism linked to cellular toxicity. However, at higher concentrations, an unknown mechanism increases IL-6 gene expression, reducing SiO2NPs' cytotoxic effects. These effects are concentration-dependent and not influenced by exposure times. Further investigation is recommended to determine this mechanism's nature and implications, particularly in cancer research.


Assuntos
Sobrevivência Celular , Interleucina-6 , Nanopartículas , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Células A549 , Nanopartículas/toxicidade , Nanopartículas/química , Interleucina-6/metabolismo , Interleucina-6/genética , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos
2.
Iran J Pharm Res ; 21(1): e123823, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765511

RESUMO

Breast cancer is a heterogeneous disease in which many factors and receptors are effective in the disease process and response to treatment. Currently, estrogen, progesterone, and HER2 receptors are among the most important factors in choosing a treatment regimen. Other metabolic factors that may affect the treatment outcome include diabetes and hyperinsulinemia. In order to evaluate the role and complexity of cross-talk between different pathways initiating from various receptors, value the most common drugs in the treatment of breast cancer are investigated on different cell lines in this manuscript at the cell culture level. The result of different doses of Tamoxifen and estradiol on the cells with various levels of the estrogenic, progesterone, and HER2 receptors is examined alone, or in combinations, and the presence or absence of insulin. The effects of these variables on the cells' growth pattern and survival in various breast cancer cells are investigated using cell counting, colony counting, and MTT assays. Our results have further confirmed the complexity of deciding on the outcome of treatment for breast cancer with such a wide variability in the kind of receptors and biochemical agents present in the body of a cancer patient.

3.
Iran J Pharm Res ; 21(1): e127041, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36710987

RESUMO

Breast cancer is an invasive disease with a high prevalence among females. Despite various treatments, studies are still ongoing to find an effective treatment for this disease. This study aimed to synthesize a new series of diaryl benzo[d]imidazo[2,1-b]thiazole compounds containing aminoethoxy side chain and in vitro investigate their cytotoxicity on a human breast cancer cell line (MCF-7). Twelve derivatives (6a-6l) were synthesized from this scaffold, the structures of which were spectroscopically confirmed. The cytotoxic effects of the derivatives on the MCF-7 cell line were also assessed using the MTT assay. All these compounds showed a good inhibitory effect on the MCF-7 cell line, compared to that of tamoxifen. Compounds (6i) and (6j) showed higher cytotoxicity with relevant inhibitory effects of 81% and 73%, respectively.

4.
Carbohydr Polym ; 265: 118027, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966822

RESUMO

In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ±â€¯14.59 nm (n = 3) in size with optimal morphological characteristics, whereas polydisperse 423 ±â€¯53.33 nm (n = 3) nanoparticles were obtained by the conventional method. Furthermore, cisplatin was loaded in NPs without becoming inactivated, and the microfluidic technique demonstrated higher encapsulation efficiency, controlled release, and consequently lower IC50 values during exposure to the A2780 cell line proving that microfluidic synthesized NPs were able to enter the cells and release the drug more efficiently. The developed microfluidic platform presents valuable features that could potentially provide the clinical translation of NPs in drug delivery.


Assuntos
Quitosana/química , Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Microfluídica/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/química , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Polifosfatos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
Iran J Pharm Res ; 20(4): 229-237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35194442

RESUMO

Cancers in terms of morbidity and mortality are one of the major universal issues. New compounds of anticancer agents based on ß-aryl-ß-mercapto ketones scaffold possessing piperidinylethoxy or morpholinylethoxy groups were synthesized and evaluated as cytotoxic agents. Cytotoxic effects of synthesized compounds were measured against MCF-7, human ER-positive breast cancer cell lines, using MTT assay. The results indicated that all compounds had high cytotoxic activity on MCF-7 cancerous cells, even more than the reference drug Tamoxifen. Among them, compounds 3-(4-(2-morpholinoethoxy)phenyl)-1-phenyl-3-(phenylthio)propan-1-one (4a) and 1-(4-methoxyphenyl)-3-(3-(2-morpholinoethoxy)phenyl)-3-(phenylthio)propan-1-one (4h) had no significant cytotoxic effects on normal cells compared to Tamoxifen. Our results also indicated that adding tertiary amine basic side chain, found in Tamoxifen drug, to 1,3-diphenyl-3-(phenylthio)propan-1-ones improves the cytotoxic effects of these compounds on breast cancer cells.

6.
Iran J Pharm Res ; 19(2): 61-69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224211

RESUMO

Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most of them imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cytotoxicity and fewer adverse effects. Physical factors are the main means that can influence cell-biomaterial interaction. To explore the importance of attachment phenomena on cancer cells in this research, polydimethylsiloxane (PDMS) substrates with varied stiffness and roughness were synthesized and lung cancer cell's behavior on these surfaces was examined. To achieve diverse surface topography SDBD plasma was used at various exposure times, and different stiffness was obtained by changing in curing agent amount. Atomic force microscopy (AFM) and tensile modulus were employed to the characterization of roughness and stiffness respectively. Lung cancer cell survival and growth were studied by MTT and image processing analysis. The results indicated that softer and rougher surface made lung cancer cells to die. The number of detached cells, mean space of the detached cells, cellular coverage of surface, and the ratio of detached/ all cellular coverage were significantly affected by roughness and stiffness. Therefore, physical factors can control cell function, especially in lung cancer cells and these results might provide a strong base to help cancer cell removal.

7.
Analyst ; 144(19): 5810-5828, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31469152

RESUMO

Fourier transform infrared (FTIR) spectroscopy is a well-known method of analysis, with various applications, including promising potential for analyzing biological samples. In the bio-spectroscopy of cells, Mie scattering may increase, which then causes spectral distortion, due to the similarity of cell size with the IR medium-wavelength. These changes make the spectrum unreliable. In previous scattering elimination studies, questionable estimations were considered. For instance, all cells were considered as spherical objects or cell size was estimated randomly. In an attempt to provide the best equation based on the natural existence of cells for the FTIR Mie scattering correction, we examined the actual biological data of cells - as opposed to those yielded from mathematical manipulations. So five biological factors: cell size, shape, granularity, circularity, and edge irregularities, for each cell line were considered as factors which cause scattering. For measuring cell size, roundness and edge irregularity, microscopy images were obtained and processed. For evaluating cell line granularity, flow cytometry was used. Finally, by including these factors, an algorithm was designed. To assess the accuracy of the proposed algorithm, the trypsinized cell spectrum was considered as the high scattering spectrum. Cells were also cultured on a MirrIR slide, and their ATR-FTIR spectrum was considered as the minimum scattering spectrum. The algorithm using the abovementioned five characteristics was used for 13 different cell lines, and in some cases the corrected spectrum demonstrated more than 97% resemblance with the ATR spectra of the same cells. A comparison between the results of this algorithm with the Bassan et al. (2017) algorithm for scattering correction that is freely available on the Internet was then conducted on two different cell lines, clearly showing the advantages of our algorithm, in terms of accuracy and precision. Therefore, this method can be viewed as a more suitable solution for scattering correction in cell investigations.


Assuntos
Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Linhagem Celular Tumoral/química , Linhagem Celular Tumoral/citologia , Humanos , Raios Infravermelhos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...