Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 59(5): 438-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910932

RESUMO

BACKGROUND: Inherited retinal diseases (IRDs) can be caused by variants in >270 genes. The Bardet-Biedl syndrome 1 (BBS1) gene is one of these genes and may be associated with syndromic and non-syndromic autosomal recessive retinitis pigmentosa (RP). Here, we identified a branchpoint variant in BBS1 and assessed its pathogenicity by in vitro functional analysis. METHODS: Whole genome sequencing was performed for three unrelated monoallelic BBS1 cases with non-syndromic RP. A fourth case received MGCM 105 gene panel analysis. Functional analysis using a midigene splice assay was performed for the putative pathogenic branchpoint variant in BBS1. After confirmation of its pathogenicity, patients were clinically re-evaluated, including assessment of non-ocular features of Bardet-Biedl syndrome. RESULTS: Clinical assessments of probands showed that all individuals displayed non-syndromic RP with macular involvement. Through detailed variant analysis and prioritisation, two pathogenic variants in BBS1, the most common missense variant, c.1169T>G (p.(Met390Arg)), and a branchpoint variant, c.592-21A>T, were identified. Segregation analysis confirmed that in all families, probands were compound heterozygous for c.1169T>G and c.592-21A>T. Functional analysis of the branchpoint variant revealed a complex splicing defect including exon 8 and exon 7/8 skipping, and partial in-frame deletion of exon 8. CONCLUSION: A putative severe branchpoint variant in BBS1, together with a mild missense variant, underlies non-syndromic RP in four unrelated individuals. To our knowledge, this is the first report of a pathogenic branchpoint variant in IRDs that results in a complex splice defect. In addition, this research highlights the importance of the analysis of non-coding regions in order to provide a conclusive molecular diagnosis.


Assuntos
Síndrome de Bardet-Biedl , Retinose Pigmentar , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Análise Mutacional de DNA , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Linhagem , Retina/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
2.
Front Neurosci ; 14: 571479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324145

RESUMO

Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.

3.
Dev Cell ; 26(3): 223-36, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23948251

RESUMO

The chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly, the chromodomains of CHD5 directly bind H3K27me3 and are required for neuronal differentiation. In the absence of CHD5, a subgroup of Polycomb-repressed genes becomes aberrantly expressed. These findings provide insights into the regulatory role of CHD5 during neurogenesis and suggest how inactivation of this candidate tumor suppressor might contribute to neuroblastoma.


Assuntos
DNA Helicases/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuroblastoma/genética , Neurogênese/genética , Neurônios/citologia , Proteínas do Grupo Polycomb/genética , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos , Neuroblastoma/patologia , Gravidez , Retina/citologia
4.
Nat Med ; 18(5): 791-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22484808

RESUMO

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Drusen accumulation is the major pathological hallmark common to both dry and wet AMD. Although activation of the immune system has been implicated in disease progression, the pathways involved are unclear. Here we show that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1b (IL-1b) and IL-18. Drusen component C1Q also activates the NLRP3 inflammasome. Moreover, the oxidative-stress-related protein-modification carboxyethylpyrrole (CEP), a biomarker of AMD, primes the inflammasome. We found cleaved caspase-1 and NLRP3 in activated macrophages in the retinas of mice immunized with CEP-adducted mouse serum albumin, modeling a dry-AMD­like pathology. We show that laser-induced choroidal neovascularization (CNV), a mouse model of wet AMD, is exacerbated in Nlrp3(-/-) but not Il1r1(-/-) mice, directly implicating IL-18 in the regulation of CNV development. These findings indicate a protective role for NLRP3 and IL-18 in the progression of AMD.


Assuntos
Proteínas de Transporte/fisiologia , Interleucina-18/fisiologia , Degeneração Macular/prevenção & controle , Drusas do Disco Óptico/metabolismo , Animais , Células Cultivadas , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/prevenção & controle , Complemento C1q/fisiologia , Imunização , Interleucina-1beta/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fagossomos/fisiologia
5.
J Gene Med ; 10(8): 930-47, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18509865

RESUMO

BACKGROUND: The blood-brain barrier (BBB) contains tight junctions (TJs) which reduce the space between adjacent endothelial cells lining the fine capillaries of the microvasculature of the brain to form a selective and regulatable barrier. METHODS: Using a hydrodynamic approach, we delivered siRNA targeting the TJ protein claudin-5 to the endothelial cells of the BBB in mice. RESULTS: We have shown a significant decrease in claudin-5 mRNA levels 24 and 48 hours post-delivery of siRNA, with levels of protein expression decreasing up to 48 hours post-injection compared to uninjected, phosphate-buffered saline (PBS)-injected and non-targeting siRNA-injected mice. We observed increased permeability at the BBB to molecules up to 742 Da, but not 4400 Da, using tracer molecule perfusion and MRI analysis. To illustrate the functional efficacy of size-selective and transient barrier opening, we have shown that enhanced delivery of the small neuropeptide thyrotropin-releasing hormone (TRH) (MW 360 Da) to the brains of mice 48 hours post-injection of siRNA targeting claudin-5 significantly modifies behavioural output. CONCLUSIONS: These data demonstrate that it is now possible to transiently and size-selectively open the BBB in mice, allowing in principle the delivery of a wide range of agents for the establishment and treatment of experimental mouse models of neurodegenerative, neuropsychiatric and malignant diseases.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Interferência de RNA , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Permeabilidade Capilar/fisiologia , Claudina-5 , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Radiografia , Junções Íntimas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...