Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 77(1): 56-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17888524

RESUMO

Nitazoxanide (NTZ), a thiazolide anti-infective, is active against anaerobic bacteria, protozoa, and a range of viruses in cell culture models, and is currently in phase II clinical development for treating chronic hepatitis C. In this report, we characterize the activities of NTZ and its active metabolite, tizoxanide (TIZ), along with other thiazolides against hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in standard antiviral assays. NTZ and TIZ exhibited potent inhibition of both HBV and HCV replication. NTZ was equally effective at inhibiting replication of lamivudine (LMV) and adefovir dipovoxil (ADV)-resistant HBV mutants and against 2'-C-methyl cytidine (2'CmeC) and telaprevir (VX-950)-resistant HCV mutants. NTZ displayed synergistic interactions with LMV or ADV against HBV, and with recombinant interferon alpha-2b (IFN) or 2'CmeC against HCV. Pre-treatment of HCV replicon-containing cells with NTZ potentiated the effect of subsequent treatment with NTZ plus IFN, but not NTZ plus 2'CmeC. NTZ induced reductions in several HBV proteins (HBsAg, HBeAg, HBcAg) produced by 2.2.15 cells, but did not affect HBV RNA transcription. NTZ, TIZ, and other thiazolides are promising new antiviral agents that may enhance current or future anti-hepatitis therapies.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Tiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/metabolismo , Linhagem Celular , Farmacorresistência Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Antígenos de Hepatite/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Mutação , Nitrocompostos , Soro , Tiazóis/metabolismo
2.
Oligonucleotides ; 17(2): 223-36, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17638526

RESUMO

Hepatitis C virus (HCV) is a leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. Currently available treatment options are of limited efficacy, and there is an urgent need for development of alternative therapies. RNA interference (RNAi) is a natural mechanism by which small interfering RNA (siRNA) or short hairpin RNA (shRNA) can mediate degradation of a target RNA molecule in a sequence-specific manner. In this study, we screened in vitro-transcribed 25-bp shRNAs targeting the internal ribosome entry site (IRES) of HCV for the ability to inhibit IRES-driven gene expression in cultured cells. We identified a 44-nt region at the 3'-end of the IRES within which all shRNAs efficiently inhibited expression of an IRES-linked reporter gene. Subsequent scans within this region with 19-bp shRNAs identified even more potent molecules, providing effective inhibition at concentrations of 0.1 nM. Experiments varying features of the shRNA design showed that, for 25-bp shRNAs, neither the size of the loop (4-10 nt) nor the sequence or pairing status of the ends affects activity, whereas in the case of 19-bp shRNAs, larger loops and the presence of a 3'-UU overhang increase efficacy. A comparison of shRNAs and siRNAs targeting the same sequence revealed that shRNAs were of comparable or greater potency than the corresponding siRNAs. Anti-HCV activity was confirmed with HCV subgenomic replicons in a human hepatocyte line. The results indicate that shRNAs, which can be prepared by either transcription or chemical synthesis, may be effective agents for the control of HCV.


Assuntos
Hepacivirus/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Regiões 5' não Traduzidas , Sequência de Bases , Linhagem Celular , Expressão Gênica , Vetores Genéticos , Hepacivirus/metabolismo , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Transfecção
3.
Antiviral Res ; 65(1): 23-34, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15652968

RESUMO

Alpha, beta, and gamma interferons (IFN-alpha, IFN-beta, IFN-gamma) have been shown to be effective inhibitors of HCV replication in human cell lines carrying HCV replicons. To help define the divergent cellular processes involved in the control of intracellular HCV replication by these agents, we have characterized the activity of monotherapies and combination therapies with the major types of human interferons against HCV replication in the HCV replicon-containing cell line, AVA5. IFN-alpha, IFN-beta, and omega interferon (IFN-omega) were equally effective at inhibiting HCV replication, while IFN-gamma was approximately 10-fold more potent. In kinetic experiments, IFN-beta and IFN-gamma inhibited HCV replication more rapidly, and for a more prolonged period following the removal of treatment, than IFN-alpha. Combination interferon therapies produced enhanced anti-HCV activity in most cases, and displayed a diverse range of interactions. Mixtures of IFN-alpha and IFN-beta exhibited generally additive to slightly antagonistic interactions, IFN-alpha or IFN-beta combined with IFN-omega were strongly antagonistic, while IFN-alpha/IFN-gamma and IFN-beta/IFN-gamma combinations displayed the most enhanced and strongly synergistic antiviral effects. Simultaneous administration of interferons in the combination treatments was found to be superior to sequential administration. Ribavirin did not exhibit any selective anti-HCV activity in cell culture, consistent with in vivo monotherapies, and did not influence the effectiveness of IFN-alpha in combination treatments. A panel of human cytokines and immune response modifiers induced by interferon and ribavirin therapies in vivo did not demonstrate anti-HCV activity in HCV replicon-containing cultures. Combination therapy can be effectively modeled using HCV replicon technology yielding potentially more effective treatment regimens. HCV replicon technology has potential utility in designing combination therapies to significantly enhance the anti-HCV activity of IFN-alpha.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Interferon Tipo I/farmacologia , Interferon gama/farmacologia , Linhagem Celular Tumoral , Citocinas/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , Replicon , Ribavirina/farmacologia , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...