Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 10(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505827

RESUMO

Fibropapillomatosis (FP) is a neoplastic disease most often found in green turtles (Chelonia mydas). Afflicted turtles are burdened with potentially debilitating tumors concentrated externally on the soft tissues, plastron, and eyes and internally on the lungs, kidneys, and the heart. Clinical signs occur at various levels, ranging from mild disease to severe debilitation. Tumors can both progress and regress in affected turtles, with outcomes ranging from death due to the disease to complete regression. Since its official description in the scientific literature in 1938, tumor growth rates have been rarely documented. In addition, FP tumors come in two very different morphologies; yet, to our knowledge, there have been no quantified differences in growth rates between tumor types. FP tumors are often rugose in texture, with a polypoid to papillomatous morphology, and may or may not be pedunculated. In other cases, tumors are smooth, with a skin-like surface texture and little to no papillose structures. In our study, we assessed growth-rate differences between rugose and smooth tumor morphologies in a rehabilitation setting. We measured average biweekly tumor growth over time in green turtles undergoing rehabilitation at the University of Florida Whitney Laboratory Sea Turtle Hospital in St. Augustine, Florida, and compared growth between rugose and smooth tumors. Our results demonstrate that both rugose and smooth tumors follow a similar active growth progression pattern, but rugose tumors grew at significantly faster rates (p = 0.013) than smooth ones. We also documented regression across several examined tumors, ranging from -0.19% up to -10.8% average biweekly negative growth. Our study offers a first-ever assessment of differential growth between tumor morphologies and an additional diagnostic feature that may lead to a more comprehensive understanding and treatment of the disease. We support the importance of tumor morphological categorization (rugose versus smooth) being documented in future FP hospital- and field-based health assessments.

2.
Nat Ecol Evol ; 7(6): 873-888, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188965

RESUMO

The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.


Assuntos
DNA Ambiental , Humanos , DNA Ambiental/análise , Monitoramento Ambiental , Biodiversidade , DNA , Genômica
3.
Psychopharmacol Bull ; 52(3): 72-80, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35815178

RESUMO

Buprenorphine and naloxone (Suboxone) is a combination medication-assisted treatment (MAT) for opioid use disorder. MAT withdrawal-induced psychosis is a rare clinical presentation. To our best knowledge, only three reports have summarized the characteristic manifestations of buprenorphine withdrawal psychosis, yet all of them were male. In this case report, we present a 41-year-old female patient with bipolar disorder and comorbid substance use disorder who developed new-onset psychosis and relapse of manic symptoms following abrupt discontinuation of Suboxone. Manic and psychotic symptoms remitted after a short-term hospitalization with the treatment of an antipsychotic and a mood stabilizer. In addition to discussing this case presentation and treatment approach, we review existing literature and discuss possible underlying mechanisms to enhance understanding of this clinical phenomenon.


Assuntos
Antipsicóticos , Transtorno Bipolar , Buprenorfina , Transtornos Psicóticos , Síndrome de Abstinência a Substâncias , Adulto , Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Buprenorfina/efeitos adversos , Combinação Buprenorfina e Naloxona/uso terapêutico , Feminino , Humanos , Masculino , Naloxona/efeitos adversos , Transtornos Psicóticos/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/etiologia
4.
Mol Ecol Resour ; 22(7): 2471-2493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35377560

RESUMO

Elusive aquatic wildlife, such as endangered sea turtles, are difficult to monitor and conserve. As novel molecular and genetic technologies develop, it is possible to adapt and optimize them for wildlife conservation. One such technology is environmental (e)DNA - the detection of DNA shed from organisms into their surrounding environments. We developed species-specific green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle probe-based qPCR assays, which can detect and quantify sea turtle eDNA in controlled (captive tank water and sand samples) and free ranging (oceanic water samples and nesting beach sand) settings. eDNA detection complemented traditional in-water sea turtle monitoring by enabling detection even when turtles were not visually observed. Furthermore, we report that high throughput shotgun sequencing of eDNA sand samples enabled sea turtle population genetic studies and pathogen monitoring, demonstrating that noninvasive eDNA techniques are viable and efficient alternatives to biological sampling (e.g., biopsies and blood draws). Genetic information was obtained from sand many hours after nesting events, without having to observe or interact with the target individual. This greatly reduces the sampling stress experienced by nesting mothers and emerging hatchlings, and avoids sacrificing viable eggs for genetic analysis. The detection of pathogens from sand indicates significant potential for increased wildlife disease monitoring capacity and viral variant surveillance. Together, these results demonstrate the potential of eDNA approaches to ultimately help understand and conserve threatened species such as sea turtles.


Assuntos
DNA Ambiental , Tartarugas , Animais , DNA Ambiental/genética , Metagenômica , Areia , Tartarugas/genética , Água
5.
Animals (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34827808

RESUMO

Fibropapillomatosis (FP), a debilitating, infectious neoplastic disease, is rarely reported in endangered Kemp's ridley sea turtles (Lepidochelys kempii). With this study, we describe FP and the associated chelonid alphaherpesvirus 5 (ChHV5) in Kemp's ridley turtles encountered in the United States during 2006-2020. Analysis of 22 case reports of Kemp's ridley turtles with FP revealed that while the disease was mild in most cases, 54.5% were adult turtles, a reproductively valuable age class whose survival is a priority for population recovery. Of 51 blood samples from tumor-free turtles and 12 tumor samples from turtles with FP, 7.8% and 91.7%, respectively, tested positive for ChHV5 DNA via quantitative polymerase chain reaction (qPCR). Viral genome shotgun sequencing and phylogenetic analysis of six tumor samples show that ChHV5 sequences in Kemp's ridley turtles encountered in the Gulf of Mexico and northwestern Atlantic cluster with ChHV5 sequences identified in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles from Hawaii, the southwestern Atlantic Ocean, and the Caribbean. Results suggest an interspecific, spatiotemporal spread of FP among Kemp's ridley turtles in regions where the disease is enzootic. Although FP is currently uncommon in this species, it remains a health concern due to its uncertain pathogenesis and potential relationship with habitat degradation.

6.
Wellcome Open Res ; 6: 219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34622016

RESUMO

Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.

7.
Animals (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573455

RESUMO

The spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth's ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2035 single nucleotide polymorphisms (SNPs), 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific, with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic virus.

8.
Commun Biol ; 4(1): 565, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980988

RESUMO

Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally co-induced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species.


Assuntos
DNA Ambiental/análise , Herpesviridae/genética , Tartarugas/virologia , Verrugas/transmissão , Animais , Carcinogênese/genética , DNA/genética , Monitoramento Ambiental/métodos , Genômica/métodos , Herpesviridae/patogenicidade , Sanguessugas/genética , Sanguessugas/patogenicidade , Papiloma/etiologia , Papiloma/virologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/virologia , Tartarugas/genética , Eliminação de Partículas Virais/genética , Verrugas/veterinária , Verrugas/virologia
9.
Commun Biol ; 4(1): 152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526843

RESUMO

Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFß and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.


Assuntos
Biomarcadores Tumorais , Proliferação de Células , Recidiva Local de Neoplasia/veterinária , Papiloma/veterinária , Neoplasias Cutâneas/veterinária , Infecções Tumorais por Vírus/veterinária , Tartarugas , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Imuno-Histoquímica , Papiloma/genética , Papiloma/metabolismo , Papiloma/cirurgia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/cirurgia , Transcriptoma , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...