Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell ; 186(26): 5675-5676, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134873

RESUMO

Autoimmune cross-reaction of specific antibodies to Epstein-Barr virus (EBV) has been associated with development of multiple sclerosis (MS). In this issue of Cell, Vietzen et al. identify additional immunological regulatory mechanisms that protect against autoimmunity in healthy people but are reduced in MS cases. The results confirm the link between EBV and MS.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/complicações
2.
mBio ; 13(3): e0083622, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642944

RESUMO

The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, γHV68, MuHV-4), are associated with numerous malignancies, including B cell lymphomas and nasopharyngeal carcinoma. These viruses employ numerous molecular strategies to colonize the host, including the expression of noncoding RNAs (ncRNAs). As the first viral ncRNAs identified, EBV-encoded RNA 1 and 2 (EBER1 and EBER2, respectively) have been investigated extensively for decades; however, their specific in vivo functions remain largely unknown. In work here, we used chimeric MHV68 viruses in an in vivo complementation system to test whether EBV EBER2 contributes to acute and/or chronic phases of infection. Expression of EBER2 derived from EBV strain B95-8 resulted in a significant expansion of latently infected B cells in vivo, which was accompanied by a decrease in virus-infected plasma cells. EBV strains typically carry one of two variants of EBER2, which differ primarily by a 5-nucleotide core polymorphism identified initially in the EBV strain M81. Strikingly, mutation of the 5 nucleotides that define this core polymorphism resulted in the loss of the infected B cell expansion and restored plasma cell infection. This work reveals that the B95-8 variant of EBER2 promotes the expansion of the latently infected B cell pool in vivo and may do so in part through inhibition of terminal differentiation. These findings provide new insight into mechanisms by which viral ncRNAs promote in vivo colonization and further and provide further evidence of the inherent tumorigenic risks associated with gammaherpesvirus manipulation of B cell differentiation. IMPORTANCE The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68, employ numerous strategies to colonize the host, including expression of noncoding RNAs (ncRNAs). As the first viral ncRNAs ever identified, EBV-encoded RNA 1 and 2 (EBER1 and EBER2) have been investigated extensively for decades; however, their specific in vivo functions remain largely unknown. Work here reveals that an EBV EBER2 variant highly associated with B cell lymphoma promoted a significantly increased expansion of the infected B cell pool in vivo, which coincided with altered B cell differentiation. Mutation of the 5 nucleotides that define this EBER2 variant resulted in the loss of B cell expansion and normal B cell differentiation. These findings provide new insight into the mechanisms by which EBV manipulates B cells in vivo to retain infected cells in the high-risk B cell differentiation pathway where they are poised for tumorigenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Herpesvirus Humano 8 , Rhadinovirus , Animais , Infecções por Vírus Epstein-Barr/genética , Gammaherpesvirinae/genética , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/genética , Humanos , Camundongos , Nucleotídeos , Polimorfismo Genético , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral , Rhadinovirus/genética , Latência Viral/genética
3.
J Virol ; 96(12): e0039422, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35612313

RESUMO

The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children.


Assuntos
Infecções por Vírus Epstein-Barr , Deleção de Genes , Genoma Viral , Herpesvirus Humano 4 , Transtornos Linfoproliferativos , Adulto , Infecções Assintomáticas , Criança , Herpesvirus Humano 4/genética , Humanos , Células Matadoras Naturais/virologia , Transtornos Linfoproliferativos/virologia , Linfócitos T/virologia
4.
Int J Equity Health ; 20(1): 254, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903229

RESUMO

BACKGROUND: Air quality is monitored at a local level in the UK as part of the Local Air Quality Management (LAQM) system. If air quality objectives within an area are not achieved an Air Quality Management Area (AQMA) is declared and action plan developed. The efficacy of this system in reducing air pollution has increasingly come into question, however very little is known about its impact on health or health inequalities. We therefore investigated the effect of declaring an AQMA on emergency hospitalisations for respiratory conditions in the North West Coast region of England, and examined whether the effect differed between more compared to less deprived neighbourhoods. METHODS: This longitudinal controlled ecological study analysed neighbourhoods located within or touching the boundaries of AQMAs declared in the North West Coast region between 2006 and 2016. Each of these intervention neighbourhoods were matched with five control neighbourhoods which had never been located within/touching an AQMA boundary. Difference-in-differences methods were used to compare the change in hospitalisation rates in the intervention neighbourhoods to the change in hospitalisation rates in the matched control neighbourhoods, before and after the declaration of an AQMA. RESULTS: In total, 108 intervention neighbourhoods and 540 control neighbourhoods were analysed over the period 2005-2017, giving a total sample size of 8424 neighbourhood-years. Emergency hospitalisations for respiratory conditions decreased in the intervention neighbourhoods by 158 per 100,000 per year [95% CI 90 to 227] after an AQMA was declared relative to the control neighbourhoods. There was a larger decrease in hospitalisation rates following the declaration of an AQMA in more compared to less income deprived neighbourhoods. CONCLUSIONS: Our results suggest the LAQM system has contributed to a reduction in emergency hospitalisations for respiratory conditions, and may represent an effective strategy to reduce inequalities in health. These findings highlight the importance of measuring the success of air quality policies not just in terms of air pollution but also in terms of population health.


Assuntos
Poluição do Ar , Poluição do Ar/análise , Inglaterra/epidemiologia , Hospitalização , Humanos , Políticas , Características de Residência
5.
Blood ; 138(22): 2155-2156, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854879

Assuntos
Hepcidinas , Ferro
6.
Br J Haematol ; 195(2): 249-255, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34431085

RESUMO

Chronic active Epstein-Barr virus (CAEBV) disease is a rare condition characterised by persistent EBV infection in previously healthy individuals. Defective EBV genomes were found in East Asian patients with CAEBV. In the present study, we sequenced 14 blood EBV samples from three UK patients with CAEBV, comparing the results with saliva CAEBV samples and other conditions. We observed EBV deletions in blood, some of which may disrupt viral replication, but not saliva in CAEBV. Deletions were lost overtime after successful treatment. These findings are compatible with CAEBV being associated with the evolution and persistence of EBV+ haematological clones that are lost on successful treatment.


Assuntos
Infecções por Vírus Epstein-Barr/sangue , Herpesvirus Humano 4/genética , Saliva/metabolismo , Deleção de Sequência/genética , Adolescente , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença Crônica , Vírus Defeituosos/genética , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/epidemiologia , Ásia Oriental/epidemiologia , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco de Sangue Periférico/métodos , Polimorfismo de Nucleotídeo Único/genética , Rituximab/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
7.
PLoS Pathog ; 17(8): e1009834, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352044

RESUMO

Viruses suppress immune recognition through diverse mechanisms. Epstein-Barr Virus (EBV) establishes latent infection in memory B-lymphocytes and B-cell malignancies where it impacts B-cell immune function. We show here that EBV primary infection of naïve B-cells results in a robust down-regulation of HLA genes. We found that the viral encoded transcriptional regulatory factor EBNA2 bound to multiple regulatory regions in the HLA locus. Conditional expression of EBNA2 correlated with the down regulation of HLA class II transcription. EBNA2 down-regulation of HLA transcription was found to be dependent on CIITA, the major transcriptional activator of HLA class II gene transcription. We identified a major EBNA2 binding site downstream of the CIITA gene and upstream of DEXI, a dexamethasone inducible gene that is oriented head-to-head with CIITA gene transcripts. CRISPR/Cas9 deletion of the EBNA2 site upstream of DEXI attenuated CIITA transcriptional repression. EBNA2 caused an increase in DEXI transcription and a graded change in histone modifications with activation mark H3K27ac near the DEXI locus, and a loss of activation marks at the CIITA locus. A prominent CTCF binding site between CIITA and DEXI enhancers was mutated and further diminished the effects of EBNA2 on CIITA. Analysis of HiC data indicate that DEXI and CIITA enhancers are situated in different chromosome topological associated domains (TADs). These findings suggest that EBNA2 down regulates HLA-II genes through the down regulation of CIITA, and that this down regulation is an indirect consequence of EBNA2 enhancer formation at a neighboring TAD. We propose that enhancer competition between these neighboring chromosome domains represents a novel mechanism for gene regulation demonstrated by EBNA2.


Assuntos
Linfócitos B/virologia , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Genes MHC da Classe II/fisiologia , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Transativadores/genética , Proteínas Virais/metabolismo , Linfócitos B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Proteínas Virais/genética
8.
Adv Sci (Weinh) ; 8(5): e2002919, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717845

RESUMO

Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.

9.
Nat Commun ; 12(1): 512, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479235

RESUMO

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms to prevent telomere shortening. ~85% of cancers circumvent telomeric attrition by re-expressing telomerase, while the remaining ~15% of cancers induce alternative lengthening of telomeres (ALT), which relies on break-induced replication (BIR) and telomere recombination. Although ALT tumours were first reported over 20 years ago, the mechanism of ALT induction remains unclear and no study to date has described a cell-based model that permits the induction of ALT. Here, we demonstrate that infection with Kaposi's sarcoma herpesvirus (KSHV) induces sustained acquisition of ALT-like features in previously non-ALT cell lines. KSHV-infected cells acquire hallmarks of ALT activity that are also observed in KSHV-associated tumour biopsies. Down-regulating BIR impairs KSHV latency, suggesting that KSHV co-opts ALT for viral functionality. This study uncovers KSHV infection as a means to study telomere maintenance by ALT and reveals features of ALT in KSHV-associated tumours.


Assuntos
Neoplasias/genética , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Telômero/genética , Carcinogênese , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Replicação do DNA/genética , Células HeLa , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Hibridização in Situ Fluorescente , Neoplasias/patologia , Neoplasias/virologia , Proteoma/genética , Proteoma/metabolismo , Telomerase/genética , Telomerase/metabolismo
10.
Biomolecules ; 12(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35053165

RESUMO

Most of the world's population is infected by the Epstein-Barr virus (EBV), but the incidence of the diseases associated with EBV infection differs greatly in different parts of the world. Many factors may determine those differences, but variation in the virus genome is likely to be a contributing factor for some of the diseases. Here, we describe the main forms of EBV genome sequence variation, and the mechanisms by which variations in the virus genome are likely to contribute to disease. EBV genome deletions or polymorphisms can also provide useful markers for monitoring disease. If some EBV strains prove to be more pathogenic than others, this suggests the possible value of immunising people against infection by those pathogenic strains.


Assuntos
DNA Viral/genética , Infecções por Vírus Epstein-Barr/genética , Genoma Viral , Herpesvirus Humano 4/genética , Mutação , DNA Viral/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Humanos
11.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059024

RESUMO

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Assuntos
Linfócitos B/metabolismo , Fatores de Transcrição NFATC/genética , Animais , Linfócitos B/virologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Ativação Viral , Latência Viral
12.
PLoS Pathog ; 15(7): e1007458, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283782

RESUMO

Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV.


Assuntos
Proteínas de Transporte/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linfócitos B/metabolismo , Linfócitos B/virologia , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular , Transformação Celular Viral/genética , Transformação Celular Viral/fisiologia , Proteínas Correpressoras , Proteínas de Ligação a DNA , Antígenos Nucleares do Vírus Epstein-Barr/química , Genes Virais , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/patogenicidade , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/química
13.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20180299, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30955492

RESUMO

Many regions of the Epstein-Barr virus (EBV) genome, repeated and unique sequences, contribute to the geographical variation observed between strains. Here we use a large alignment of curated EBV genome sequences to identify major sites of variation in the genome of type 1 EBV strains; the CAO deletion in latent membrane protein 1 (LMP1) is the most frequent major indel present in the unique regions of EBV strains from various parts of the world. Principal component analysis was used to identify patterns of sequence variation and nucleotide positions in the sequences that can distinguish EBV from some different geographical regions. Viral genome sequence variation also affects interpretation of genetic content; known genes, origins of replication and gene expression control regions explain most of the viral genome but there are still a few sections of unknown function. One of these EBV genome regions contains a large inverted repeat sequence (invR) within the IR-1 major internal repeat array. We deleted this invR sequence and showed that this abolished the ability of the virus to transform human B cells into lymphoblastoid cell lines. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Genoma Viral/genética , Herpesvirus Humano 4/genética , Variação Genética , Geografia , Humanos , Sequências Repetidas Invertidas , Proteínas Virais/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20190041, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30955496

RESUMO

One out of 10 cancers is estimated to arise from infections by a handful of oncogenic viruses. These infectious cancers constitute an opportunity for primary prevention through immunization against the viral infection, for early screening through molecular detection of the infectious agent, and potentially for specific treatments, by targeting the virus as a marker of cancer cells. Accomplishing these objectives will require a detailed understanding of the natural history of infections, the mechanisms by which the viruses contribute to disease, the mutual adaptation of viruses and hosts, and the possible viral evolution in the absence and in the presence of the public health interventions conceived to target them. This issue showcases the current developments in experimental tissue-like and animal systems, mathematical models and evolutionary approaches to understand DNA oncoviruses. Our global aim is to provide proximate explanations to the present-day interface and interactions between virus and host, as well as ultimate explanations about the adaptive value of these interactions and about the evolutionary pathways that have led to the current malignant phenotype of oncoviral infections. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/patogenicidade , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/virologia , Animais , Vírus de DNA/fisiologia , Evolução Molecular , Humanos , Vírus Oncogênicos/fisiologia , Virulência
15.
PeerJ ; 7: e6431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842897

RESUMO

The decline of the European oyster Ostrea edulis across its biogeographic range has been driven largely by over-fishing and anthropogenic habitat destruction, often to the point of functional extinction. However, other negatively interacting factors attributing to this catastrophic decline include disease, invasive species and pollution. In addition, a relatively complex life history characterized by sporadic spawning renders O. edulis biologically vulnerable to overexploitation. As a viviparous species, successful reproduction in O. edulis populations is density dependent to a greater degree than broadcast spawning oviparous species such as the Pacific oyster Crassostrea (Magallana) gigas. Here, we report on the benthic assemblage of O. edulis and the invasive gastropod Crepidula fornicata across three actively managed South coast harbors in one of the few remaining O. edulis fisheries in the UK. Long-term data reveals that numbers of O. edulis sampled within Chichester Harbour have decreased by 96%, in contrast numbers of C. fornicata sampled have increased by 441% over a 19-year period. The recent survey data also recorded extremely low densities of O. edulis, and extremely high densities of C. fornicata, within Portsmouth and Langstone Harbours. The native oyster's failure to recover, despite fishery closures, suggests competitive exclusion by C. fornicata is preventing recovery of O. edulis, which is thought to be due to a lack of habitat heterogeneity or suitable settlement substrate. Large scale population data reveals that mean O. edulis shell length and width has decreased significantly across all years and site groups from 2015 to 2017, with a narrowing demographic structure. An absence of juveniles and lack of multiple cohorts in the remaining population suggests that the limited fishing effort exceeds biological output and recruitment is poor. In the Langstone & Chichester 2017 sample 98% of the population is assigned to a single cohort (modal mean 71.20 ± 8.78 mm, maximum length). There is evidence of small scale (<5 km) geographic population structure between connected harbors; the 2015 Portsmouth and Chichester fishery populations exhibited disparity in the most frequent size class with 36% within 81-90 mm and 33.86% within 61-70 mm, respectively, the data also indicates a narrowing demographic over a short period of time. The prevalence of the disease Bonamiosis was monitored and supports this microgeographic population structure. Infection rates of O. edulis by Bonamia ostreae was 0% in Portsmouth Harbor (n = 48), 4.1% in Langstone (n = 145) and 21.3% in Chichester (n = 48) populations. These data collectively indicate that O. edulis is on the brink of an ecological collapse within the Solent harbors. Without effective intervention to mitigate the benthic dominance by C. fornicata in the form of biologically relevant fishery policy and the management of suitable recruitment substrate these native oyster populations could be lost.

16.
Nucleic Acids Res ; 47(6): 2807-2821, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649516

RESUMO

Epstein-Barr virus proteins EBNA3A, EBNA3B and EBNA3C control hundreds of host genes after infection. Changes in epigenetic marks around EBNA3-regulated genes suggest that they exert transcriptional control in collaboration with epigenetic factors. The roles of polycomb repressive complex (PRC)2 subunit SUZ12 and of PRC1 subunit BMI1 were assessed for their importance in EBNA3-mediated repression and activation. ChIP-seq experiments for SUZ12 and BMI1 were performed to determine their global localization on chromatin and analysis offered further insight into polycomb protein distribution in differentiated cells. Their localization was compared to that of each EBNA3 to resolve longstanding questions about the EBNA3-polycomb relationship. SUZ12 did not co-localize with any EBNA3, whereas EBNA3C co-localized significantly and co-immunoprecipitated with BMI1. In cells expressing a conditional EBNA3C, BMI1 was sequestered to EBNA3C-binding sites after EBNA3C activation. When SUZ12 or BMI1 was knocked down in the same cells, SUZ12 did not contribute to EBNA3C-mediated regulation. Surprisingly, after BMI1 knockdown, EBNA3C repressed equally efficiently but host gene activation by EBNA3C was impaired. This overturns previous assumptions about BMI1/PRC1 functions during EBNA3C-mediated regulation, for the first time identifies directly a host factor involved in EBNA3-mediated activation and provides a new insight into how PRC1 can be involved in gene activation.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/fisiologia , Interações Hospedeiro-Patógeno/genética , Complexo Repressor Polycomb 1/fisiologia , Ativação Transcricional , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Herpesvirus Humano 4/fisiologia , Humanos , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica
17.
Annu Rev Pathol ; 14: 29-53, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30125149

RESUMO

Epstein-Barr virus (EBV) contributes to about 1.5% of all cases of human cancer worldwide, and viral genes are expressed in the malignant cells. EBV also very efficiently causes the proliferation of infected human B lymphocytes. The functions of the viral proteins and small RNAs that may contribute to EBV-associated cancers are becoming increasingly clear, and a broader understanding of the sequence variation of the virus genome has helped to interpret their roles. The improved understanding of the mechanisms of these cancers means that there are great opportunities for the early diagnosis of treatable stages of EBV-associated cancers and the use of immunotherapy to target EBV-infected cells or overcome immune evasion. There is also scope for preventing disease by immunization and for developing therapeutic agents that target the EBV gene products expressed in the cancers.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Neoplasias/genética , Proteínas da Matriz Viral/genética , Linfócitos B/citologia , Linfócitos B/virologia , Proliferação de Células , Genes Virais/genética , Genoma Viral/genética , Humanos , Neoplasias/virologia
19.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111570

RESUMO

One hundred thirty-eight new Epstein-Barr virus (EBV) genome sequences have been determined. One hundred twenty-five of these and 116 from previous reports were combined to produce a multiple-sequence alignment of 241 EBV genomes, which we have used to analyze variation within the viral genome. The type 1/type 2 classification of EBV remains the major form of variation and is defined mostly by EBNA2 and EBNA3, but the type 2 single-nucleotide polymorphisms (SNPs) at the EBNA3 locus extend into the adjacent gp350 and gp42 genes, whose products mediate infection of B cells by EBV. A small insertion within the BART microRNA region of the genome was present in 21 EBV strains. EBV from saliva of U.S. patients with chronic active EBV infection aligned with the wild-type EBV genome with no evidence of WZhet rearrangements. The V3 polymorphism in the Zp promoter for BZLF1 was found to be frequent in nasopharyngeal carcinoma cases from both Hong Kong and Indonesia. Codon usage was found to differ between latent and lytic cycle EBV genes, and the main forms of variation of the EBNA1 protein have been identified.IMPORTANCE Epstein-Barr virus causes most cases of infectious mononucleosis and posttransplant lymphoproliferative disease. It contributes to several types of cancer, including Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. EBV genome variation is important because some of the diseases associated with EBV have very different incidences in different populations and geographic regions, and differences in the EBV genome might contribute to these diseases. Some specific EBV genome alterations that appear to be significant in EBV-associated cancers are already known, and current efforts to make an EBV vaccine and antiviral drugs should also take account of sequence differences in the proteins used as targets.


Assuntos
Linfoma de Burkitt/genética , Genoma Viral/genética , Herpesvirus Humano 4/genética , Mononucleose Infecciosa/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias Gástricas/genética , Sequência de Bases , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Transativadores/genética , Proteínas Virais/genética
20.
PLoS Pathog ; 14(7): e1007179, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052684

RESUMO

Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Transativadores/genética , Ativação Viral/genética , Variação Genética/genética , Herpesvirus Humano 4/genética , Humanos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...