Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 408(4): 1107-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700449

RESUMO

Here, we report the most comprehensive characterization of nanodiamonds (NDs) yet undertaken. Five different samples from three different vendors were analyzed by a suite of analytical techniques, including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Brunauer-Emmett-Teller (BET) surface area measurements, and particle size distribution (PSD) measurements. XPS revealed the elemental compositions of the ND surfaces (83-87 at.% carbon and 12-14 at.% oxygen) with varying amounts of nitrogen (0.4-1.8 at.%), silicon (0.1-0.7 at.%), and tungsten (0.3 at.% only in samples from one vendor). ToF-SIMS and ICP showed metal impurities (Al, Fe, Ni, Cr, etc. with unexpectedly high amounts of W in one vendor's samples: ca. 900 ppm). Principal component analyses were performed on the ToF-SIMS and ICP data. DRIFT showed key functional groups (-OH, C=O, C-O, and C=C). BET showed surface areas of 50-214 m(2)/g. XRD and TEM revealed PSD (bimodal distribution and a wide PSD, 5-100 nm, for one vendor's samples). XRD also provided particle sizes (2.7-27 nm) and showed the presence of graphite. EELS gave the sp(2)/sp(3) contents of the materials (37-88% sp(3)). PSD measurements were performed via differential sedimentation of the particles (mean particle size ca. 17-50 nm). This comprehensive understanding should allow for improved construction of nanodiamond-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...