Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Brain Sci ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790472

RESUMO

Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstructure during maturation and ageing. In general, patterns of cerebral maturation and decline render non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstructural changes is heterochronous for various white matter fibres. Recent studies have demonstrated that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen's d of mean diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity. However, some inferences on the maturation grades of different fibre types, such as association, projection, and commissural, were of a preliminary nature due to the insufficient number of fibres considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity of microstructural maturation between pre-adolescence and middle adulthood based on DTI and DKI metrics. Using the effect size of the between-group parametric changes and Cohen's d, we observed that all commissural fibres achieved the highest level of maturity, followed by the majority of projection fibres, while the majority of association fibres were the least matured. We also demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.

2.
Neurology ; 102(9): e209271, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38630966

RESUMO

BACKGROUND AND OBJECTIVES: Clinical heterogeneity of patients with Parkinson disease (PD) is well recognized. PD with REM sleep behavior disorder (RBD) is a more malignant phenotype with faster motor progression and higher nonmotor symptom burden. However, the neural mechanisms underlying this clinical divergence concerning imbalances in neurotransmitter systems remain elusive. METHODS: Combining magnetic resonance (MR) spectroscopy and [11C]ABP688 PET on a PET/MR hybrid system, we simultaneously investigated two different mechanisms of glutamate signaling in patients with PD. Patients were grouped according to their RBD status in overnight video-polysomnography and compared with age-matched and sex-matched healthy control (HC) participants. Total volumes of distribution (VT) of [11C]ABP688 were estimated with metabolite-corrected plasma concentrations during steady-state conditions between 45 and 60 minutes of the scan following a bolus-infusion protocol. Glutamate, glutamine, and glutathione levels were investigated with single-voxel stimulated echo acquisition mode MR spectroscopy of the left basal ganglia. RESULTS: We measured globally elevated VT of [11C]ABP688 in 16 patients with PD and RBD compared with 17 patients without RBD and 15 HC participants (F(2,45) = 5.579, p = 0.007). Conversely, glutamatergic metabolites did not differ between groups and did not correlate with the regional VT of [11C]ABP688. VT of [11C]ABP688 correlated with the amount of REM sleep without atonia (F(1,42) = 5.600, p = 0.023) and with dopaminergic treatment response in patients with PD (F(1,30) = 5.823, p = 0.022). DISCUSSION: Our results suggest that patients with PD and RBD exhibit altered glutamatergic signaling indicated by higher VT of [11C]ABP688 despite unaffected glutamate levels. The imbalance of glutamate receptors and MR spectroscopy glutamate metabolite levels indicates a novel mechanism contributing to the heterogeneity of PD and warrants further investigation of drugs targeting mGluR5.


Assuntos
Doença de Parkinson , Piridinas , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/diagnóstico , Transtorno do Comportamento do Sono REM/diagnóstico , Oximas , Glutamatos
3.
Parkinsonism Relat Disord ; 114: 105777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549587

RESUMO

INTRODUCTION: Differences in dopaminergic motor response in Parkinson's disease (PD) patients can be related to PD subtypes, and previous fMRI studies associated dopaminergic motor response with corticostriatal functional connectivity. While traditional fMRI analyses have assessed the mean connectivity between regions of interest, an important aspect driving dopaminergic response might lie in the temporal dynamics in corticostriatal connections. METHODS: This study aims to determine if altered resting-state dynamic functional network connectivity (DFC) is associated with dopaminergic motor response. To test this, static and DFC were assessed in 32 PD patients and 18 healthy controls (HC). Patients were grouped as low and high responders using a median split of their dopaminergic motor response. RESULTS: Patients featuring a high dopaminergic motor response were observed to spend more time in a regionally integrated state compared to HC. Furthermore, DFC between the anterior midcingulate cortex/dorsal anterior cingulate cortex (aMCC/dACC) and putamen was lower in low responders during a more segregated state and correlated with dopaminergic motor response. CONCLUSION: The findings of this study revealed that temporal dynamics of fronto-striatal connectivity are associated with clinically relevant information, which may be considered when assessing functional connectivity between regions involved in motor initiation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Dopamina , Corpo Estriado/diagnóstico por imagem , Putamen , Cognição , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico
4.
PLoS One ; 18(6): e0286633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267283

RESUMO

The aim of this work is to quantify the metabolic profile of the human putamen in vivo in a cohort of elderly subjects using single-voxel proton magnetic resonance spectroscopy. To obtain metabolite concentrations specific to the putamen, we investigated a correction method previously proposed to account for the tissue composition of the volume of interest. We compared the method with the conventional approach, which a priori assumes equal metabolite concentrations in GM and WM. Finally, we compared the concentrations acquired at 3 Tesla (T) and 7 T MRI scanners. Spectra were acquired from 15 subjects (age: 67.7 ± 8.3 years) at 3 T and 7 T, using an ultra-short echo time, stimulated echo acquisition mode sequence. To robustly estimate the WM-to-GM metabolite concentration ratio, five additional subjects were measured for whom the MRS voxel was deliberately shifted from the putamen in order to increase the covered amount of surrounding WM. The concentration and WM-to-GM concentration ratio for 16 metabolites were reliably estimated. These ratios ranged from ~0.3 for γ-aminobutyric acid to ~4 for N-acetylaspartylglutamate. The investigated correction method led to significant changes in concentrations compared to the conventional method, provided that the ratio significantly differed from unity. Finally, we demonstrated that differences in tissue voxel composition cannot fully account for the observed concentration difference between field strengths. We provide not only a fully comprehensive quantification of the neurochemical profile of the putamen in elderly subjects, but also a quantification of the WM-to-GM concentration ratio. This knowledge may serve as a basis for future studies with varying tissue voxel composition, either due to tissue atrophy, inconsistent voxel positioning or simply when pooling data from different voxel locations.


Assuntos
Encéfalo , Putamen , Humanos , Idoso , Pessoa de Meia-Idade , Encéfalo/metabolismo , Putamen/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Metaboloma
5.
Eur J Neurol ; 30(7): 2106-2111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37038631

RESUMO

BACKGROUND AND PURPOSE: Cognitive decline is a frequent and debilitating non-motor symptom for patients with Parkinson's disease (PD). Metabolic alterations in the occipital cortex during visual processing may serve as a biomarker for cognitive decline in patients with PD. METHODS: Sixteen patients with PD (Unified Parkinson's Disease Rating Scale Part 3, OFF, 38.69 ± 17.25) and 10 age- and sex-matched healthy controls (HC) underwent 7-T functional magnetic resonance spectroscopy (MRS) utilizing a visual checkerboard stimulation. Glutamate metabolite levels during rest versus stimulation were compared. Furthermore, correlates of the functional MRS response with performance in visuo-cognitive tests were investigated. RESULTS: No differences in static MRS between patients with PD and HC were detected, but a dynamic glutamate response was observed in functional MRS in HC upon visual stimulation, which was blunted in patients with PD (F1,22 = 7.13, p = 0.014; η p 2 = 0.245). A diminished glutamate response correlated with poorer performance in the Benton Judgment of Line Orientation test in PD (r = -0.57, p = 0.020). CONCLUSIONS: Our results indicate that functional MRS captures even subtle differences in neural processing linked to the behavioral performance, which would have been missed by conventional, static MRS. Functional MRS thus represents a promising tool for studying molecular alterations at high sensitivity. Its prognostic potential should be evaluated in longitudinal studies, prospectively contributing to earlier diagnosis and individual treatment decisions.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Processamento Espacial , Humanos , Ácido Glutâmico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo
6.
Brain Sci ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979198

RESUMO

BACKGROUND: Attention-deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder neurobiologically conceptualized as a network disorder in white and gray matter. A relatively new branch in ADHD research is sensory processing. Here, altered sensory processing i.e., sensory hypersensitivity, is reported, especially in the auditory domain. However, our perception is driven by a complex interplay across different sensory modalities. Our brain is specialized in binding those different sensory modalities to a unified percept-a process called multisensory integration (MI) that is mediated through fronto-temporal and fronto-parietal networks. MI has been recently described to be impaired for complex stimuli in adult patients with ADHD. The current study relates MI in adult ADHD with diffusion-weighted imaging. Connectome-based and graph-theoretic analysis was applied to investigate a possible relationship between the ability to integrate multimodal input and network-based ADHD pathophysiology. METHODS: Multishell, high-angular resolution diffusion-weighted imaging was performed on twenty-five patients with ADHD (six females, age: 30.08 (SD: 9.3) years) and twenty-four healthy controls (nine females; age: 26.88 (SD: 6.3) years). Structural connectome was created and graph theory was applied to investigate ADHD pathophysiology. Additionally, MI scores, i.e., the percentage of successful multisensory integration derived from the McGurk paradigm, were groupwise correlated with the structural connectome. RESULTS: Structural connectivity was elevated in patients with ADHD in network hubs mirroring altered default-mode network activity typically reported for patients with ADHD. Compared to controls, MI was associated with higher connectivity in ADHD between Heschl's gyrus and auditory parabelt regions along with altered fronto-temporal network integrity. CONCLUSION: Alterations in structural network integrity in adult ADHD can be extended to multisensory behavior. MI and the respective network integration in ADHD might represent the maturational cortical delay that extends to adulthood with respect to sensory processing.

7.
Front Oncol ; 12: 998069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452509

RESUMO

Background: In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. Patients and methods: This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. Results: Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. Conclusions: These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.

8.
Radiology ; 305(1): 5-18, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040334

RESUMO

This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.


Assuntos
Produtos Biológicos , Prótons , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
9.
Neuroimage ; 244: 118605, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592438

RESUMO

BACKGROUND AND PURPOSE: The excess fluid as a result of vasogenic oedema and the subsequent tissue cavitation obscure the microstructural characterisation of ischaemic tissue by conventional diffusion and relaxometry MRI. They lead to a pseudo-normalisation of the water diffusivity and transverse relaxation time maps in the subacute and chronic phases of stroke. Within the context of diffusion MRI, the free water elimination and mapping method (FWE) with echo time dependence has been proposed as a promising approach to measure the amount of free fluid in brain tissue robustly and to eliminate its biasing effect on other biomarkers. In this longitudinal study of transient middle cerebral artery occlusion (MCAo) in the rat brain, we investigated the use of FWE MRI with echo time dependence for the characterisation of the tissue microstructure and explored the potential of the free water fraction as a novel biomarker of ischaemic tissue condition. METHODS: Adult rats received a transient MCAo. Diffusion- and transverse relaxation-weighted MRI experiments were performed longitudinally, pre-occlusion and on days 1, 3, 4, 5, 6, 7 and 10 after MCAo on four rats. Histology was performed for non-stroke and 1, 3 and 10 days after MCAo on three different rats at each time point. RESULTS: The free water fraction was homogeneously increased in the ischaemic cortex one day after stroke. Between three and ten days after stroke, the core of the ischaemic tissue showed a progressive normalisation in the amount of free water, whereas the inner and outer border zones of the ischaemic cortex depicted a large, monotonous increase with time. The specific lesions in brain sections were verified by H&E and immunostaining. The tissue-specific diffusion and relaxometry MRI metrics in the ischaemic cortex were significantly different compared to their conventional counterpart. CONCLUSIONS: Our results demonstrate that the free water fraction in FWE MRI with echo time dependence is a valuable biomarker, sensitive to the progressive degeneration in ischaemic tissue. We showed that part of the heterogeneity previously observed in conventional parameter maps can be accounted for by a heterogeneous distribution of free water in the tissue. Our results suggest that the temporal evolution of the free fluid fraction map at the core and inner border zone can be associated with the pathological changes linked to the evolution of vasogenic oedema. Namely, the homogeneous increase in free water one day after stroke and its tendency to normalise in the core of the ischaemic cortex starting three days after stroke, followed by a progressive increase in free water at the inner border zone from three to ten days after stroke. Finally, the monotonous increase in free fluid in the outer border zone of the cortex reflects the formation of fluid-filled cysts.


Assuntos
Água Corporal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Animais , Córtex Cerebral/diagnóstico por imagem , Técnicas Histológicas , Estudos Longitudinais , Modelos Animais , Ratos
10.
Brain ; 144(9): 2732-2744, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34196700

RESUMO

Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches.


Assuntos
Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos
11.
Mov Disord ; 36(9): 2187-2192, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096652

RESUMO

BACKGROUND: Motor response to dopaminergic therapy is a characteristic of patients with Parkinson's disease (PD). Whether nondopaminergic neurotransmitters contribute to treatment response is uncertain. OBJECTIVES: The aim of this study is to determine whether putaminal y-aminobutyric acid (GABA) levels are associated with dopaminergic motor response. METHODS: We assessed putaminal GABA levels in 19 PD patients and 13 healthy controls (HCs) utilizing ultra-high field proton magnetic resonance spectroscopy. Motor performance was evaluated using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale, Part III, in the ON and OFF states. Statistical analysis comprised group comparisons, correlation analysis, and multiple linear regression. RESULTS: In PD, GABA levels were significantly higher compared to HCs (1.50 ± 0.26 mM vs. 1.26 ± 0.31 mM, P = 0.022). Furthermore, GABA levels were independent predictors of absolute and relative dopaminergic treatment response. CONCLUSIONS: Our findings indicate that elevated putaminal GABA levels are associated with worse dopaminergic response in PD, emphasizing the essential role of nondopaminergic neurotransmitters in motor response. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Aminobutiratos , Dopamina , Humanos , Doença de Parkinson/tratamento farmacológico
12.
Neurooncol Adv ; 3(1): vdab044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013207

RESUMO

BACKGROUND: Radiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma. METHODS: Thirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression. RESULTS: Parameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics. CONCLUSIONS: The combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.

13.
Hum Brain Mapp ; 42(13): 4122-4133, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-30367727

RESUMO

Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low-frequency fluctuations (fALFFs), as well as 2-[18F]fluoro-2-desoxy-d-glucose (FDG)-PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact-corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs-fMRI metrics and FDG-PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) and FDG-PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs  = 0.73, p = .01). FDG-PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders.


Assuntos
Córtex Cerebral , Conectoma/métodos , Rede de Modo Padrão , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Biomarcadores , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Humanos
14.
Neuroimage Clin ; 27: 102287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32540630

RESUMO

BACKGROUND: Progressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients. METHODS: Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n = 57; WHO grade III anaplastic astrocytoma, n = 13; WHO grade III anaplastic oligodendroglioma, n = 10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls. RESULTS: The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education. CONCLUSION: Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Glioma/patologia , Glioma/fisiopatologia , Vias Neurais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Descanso/fisiologia
15.
NMR Biomed ; 33(4): e4210, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926122

RESUMO

Conventional diffusion-weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF-tissue interface, such as at the ventricles in the human brain. Another case refers to intra-tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi-compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi-compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active. The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.


Assuntos
Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Água/química , Anisotropia , Humanos , Prótons
16.
PLoS One ; 14(6): e0217916, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158259

RESUMO

This study aims to integrate an ultra-high-strength gradient coil system on a clinical 3 T magnet and demonstrate its preclinical imaging capabilities. Dedicated phantoms were used to qualitatively and quantitatively assess the performance of the gradient system. Advanced MR imaging sequences, including diffusion tensor imaging (DTI) and quantitative susceptibility mapping (QSM), were implemented and executed on an ex vivo specimen as well as in vivo rats. The DTI and QSM results on the phantom agreed well with those in the literature. Furthermore, studies on ex vivo specimens have demonstrated the applicability of DTI and QSM on our system to probe microstructural changes in a mild traumatic brain injury rat model. The feasibility of in vivo rat DTI was also demonstrated. We showed that the inserted ultra-high-strength gradient coil was successfully integrated on a clinically used magnet. After careful tuning and calibration, we verified the accuracy and quantitative preclinical imaging capability of the integrated system in phantom and in vivo rat brain experiments. This study can be essential to establish dedicated animal MRI platform on clinical MRI scanners and facilitate translational studies at clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Imãs , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Calibragem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Ratos , Fatores de Tempo , Água
17.
Magn Reson Imaging ; 45: 7-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28870514

RESUMO

Conventional fibre tractography methods based on diffusion tensor imaging exploit diffusion anisotropy and directionality in the range of low diffusion weightings (b-values). High b-value Biexponential Diffusion Tensor Analysis reported previously has demonstrated that fractional anisotropy of the slow diffusion component is essentially higher than that of conventional diffusion tensor imaging whereas popular compartment models associate this slow diffusion component with axonal water fraction. One of the primary aims of this study is to elucidate the feasibility and potential benefits of "microstructure-informed" whole-brain slow-diffusion fibre tracking (SDIFT) in humans. In vivo diffusion-weighted images in humans were acquired in the extended range of diffusion weightings≤6000smm-2 at 3T. Fast and slow diffusion tensors were reconstructed using the bi-exponential tensor decomposition, and a detailed statistical analysis of the relevant whole-brain tensor metrics was performed. We visualised three-dimensional fibre tracts in in vivo human brains using deterministic streamlining via the major eigenvector of the slow diffusion tensor. In particular, we demonstrated that slow-diffusion fibre tracking provided considerably higher fibre counts of long association fibres and allowed one to reconstruct more short association fibres than conventional diffusion tensor imaging. SDIFT is suggested to be useful as a complimentary method capable to enhance reliability and visualisation of the evaluated fibre pathways. It is especially informative in precortical areas where the uncertainty of the mono-exponential tensor evaluation becomes too high due to decreased anisotropy of low b-value diffusion in these areas. Benefits can be expected in assessment of the residual axonal integrity in tissues affected by various pathological conditions, in surgical planning, and in evaluation of cortical connectivity, in particular, between Brodmann's areas.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Valores de Referência , Reprodutibilidade dos Testes
18.
PLoS One ; 12(5): e0176192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467458

RESUMO

Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.


Assuntos
Magnetismo , Imagens de Fantasmas , Difusão , Imageamento por Ressonância Magnética/métodos
19.
J Neurosci Res ; 95(9): 1796-1808, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28117486

RESUMO

Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and ß-1 electrical generators. © 2017 Wiley Periodicals, Inc.


Assuntos
Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Adulto , Química Encefálica/fisiologia , Imagem de Difusão por Ressonância Magnética , Eletroencefalografia , Ácido Glutâmico/análise , Giro do Cíngulo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino
20.
Neuroimage ; 144(Pt A): 12-22, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639358

RESUMO

The most common modality of diffusion MRI used in the ageing and development studies is diffusion tensor imaging (DTI) providing two key measures, fractional anisotropy and mean diffusivity. Here, we investigated diffusional changes occurring between childhood (average age 10.3 years) and mitddle adult age (average age 54.3 years) with the help of diffusion kurtosis imaging (DKI), a recent novel extension of DTI that provides additional metrics quantifying non-Gaussianity of water diffusion in brain tissue. We performed voxelwise statistical between-group comparison of diffusion tensor and kurtosis tensor metrics using two methods, namely, the tract-based spatial statistics (TBSS) and the atlas-based regional data analysis. For the latter, fractional anisotropy, mean diffusivity, mean diffusion kurtosis, and other scalar diffusion tensor and kurtosis tensor parameters were evaluated for white matter fibres provided by the Johns-Hopkins-University Atlas in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Within the same age group, all evaluated parameters varied depending on the anatomical region. TBSS analysis showed that changes in kurtosis tensor parameters beyond adolescence are more widespread along the skeleton in comparison to the changes of the diffusion tensor metrics. The regional data analysis demonstrated considerably larger between-group changes of the diffusion kurtosis metrics than of diffusion tensor metrics in all investigated regions. The effect size of the parametric changes between childhood and middle adulthood was quantified using Cohen's d. We used Cohen's d related to mean diffusion kurtosis to examine heterogeneous maturation of various fibres. The largest changes of this parameter (interpreted as reflecting the lowest level of maturation by the age of children group) were observed in the association fibres, cingulum (gyrus) and cingulum (hippocampus) followed by superior longitudinal fasciculus and inferior longitudinal fasciculus. The smallest changes were observed in the commissural fibres, forceps major and forceps minor. In conclusion, our data suggest that DKI is sensitive to developmental changes in local microstructure and environment, and is particularly powerful to unravel developmental differences in major association fibres, such as the cingulum and superior longitudinal fasciculus.


Assuntos
Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Adulto , Fatores Etários , Biomarcadores , Criança , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...