Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(1): e1005351, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26751071

RESUMO

Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Lipoproteínas/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Mutantes , Virulência
2.
FEBS J ; 279(24): 4453-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23075376

RESUMO

Sequence diversity within a family of functional enzymes provides a platform for elucidating structure-function relationships and for protein engineering to improve properties important for applications. Access to nature's vast sequence diversity is often limited by the fact that only a few enzymes have been characterized in a given family. Here, we recombined the catalytic domains of three glycoside hydrolase family 48 bacterial cellulases (Cel48; EC 3.2.1.176) - Clostridium cellulolyticum CelF, Clostridium stercorarium CelY, and Clostridium thermocellum CelS - to create a diverse library of Cel48 enzymes with an average of 106 mutations from the closest native enzyme. Within this set, we found large variations in properties such as the functional temperature range, stability, and specific activity on crystalline cellulose. We showed that functional status and stability were predictable from simple linear models of the sequence-property data: recombined protein fragments contributed additively to these properties in a given chimera. Using this, we correctly predicted sequences that were as stable as any of the native Cel48 enzymes described to date. The characterization of 60 active Cel48 chimeras expands the number of characterized Cel48 enzymes from 13 to 73. Our work illustrates the role that structure-guided recombination can play in helping to identify sequence-function relationships within a family of enzymes by supplementing natural diversity with synthetic diversity.


Assuntos
Celulases/metabolismo , Clostridium/enzimologia , Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Celulases/química , Glicosídeo Hidrolases/química , Modelos Moleculares , Conformação Proteica
3.
Protein Sci ; 20(11): 1935-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898652

RESUMO

Interest in generating lignocellulosic biofuels through enzymatic hydrolysis continues to rise as nonrenewable fossil fuels are depleted. The high cost of producing cellulases, hydrolytic enzymes that cleave cellulose into fermentable sugars, currently hinders economically viable biofuel production. Here, we report the crystal structure of a prevalent endoglucanase in the biofuels industry, Cel5A from the filamentous fungus Hypocrea jecorina. The structure reveals a general fold resembling that of the closest homolog with a high-resolution structure, Cel5A from Thermoascus aurantiacus. Consistent with previously described endoglucanase structures, the H. jecorina Cel5A active site contains a primarily hydrophobic substrate binding groove and a series of hydrogen bond networks surrounding two catalytic glutamates. The reported structure, however, demonstrates stark differences between side-chain identity, loop regions, and the number of disulfides. Such structural information may aid efforts to improve the stability of this protein for industrial use while maintaining enzymatic activity through revealing nonessential and immutable regions.


Assuntos
Celulase/química , Hypocrea/enzimologia , Sequência de Aminoácidos , Biocombustíveis , Domínio Catalítico , Fenômenos Químicos , Cristalização , Dissulfetos/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
J Vis Exp ; (54)2011 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-21860379

RESUMO

Cellulase enzymes (endoglucanases, cellobiohydrolases, and ß-glucosidases) hydrolyze cellulose into component sugars, which in turn can be converted into fuel alcohols. The potential for enzymatic hydrolysis of cellulosic biomass to provide renewable energy has intensified efforts to engineer cellulases for economical fuel production. Of particular interest are fungal cellulases, which are already being used industrially for foods and textiles processing. Identifying active variants among a library of mutant cellulases is critical to the engineering process; active mutants can be further tested for improved properties and/or subjected to additional mutagenesis. Efficient engineering of fungal cellulases has been hampered by a lack of genetic tools for native organisms and by difficulties in expressing the enzymes in heterologous hosts. Recently, Morikawa and coworkers developed a method for expressing in E. coli the catalytic domains of endoglucanases from H. jecorina, an important industrial fungus with the capacity to secrete cellulases in large quantities. Functional E. coli expression has also been reported for cellulases from other fungi, including Macrophomina phaseolina and Phanerochaete chrysosporium. We present a method for high throughput screening of fungal endoglucanase activity in E. coli. This method uses the common microbial dye Congo Red (CR) to visualize enzymatic degradation of carboxymethyl cellulose (CMC) by cells growing on solid medium. The activity assay requires inexpensive reagents, minimal manipulation, and gives unambiguous results as zones of degradation ("halos") at the colony site. Although a quantitative measure of enzymatic activity cannot be determined by this method, we have found that halo size correlates with total enzymatic activity in the cell. Further characterization of individual positive clones will determine , relative protein fitness. Traditional bacterial whole cell CMC/CR activity assays involve pouring agar containing CMC onto colonies, which is subject to cross-contamination, or incubating cultures in CMC agar wells, which is less amenable to large-scale experimentation. Here we report an improved protocol that modifies existing wash methods for cellulase activity: cells grown on CMC agar plates are removed prior to CR staining. Our protocol significantly reduces cross-contamination and is highly scalable, allowing the rapid screening of thousands of clones. In addition to H. jecorina enzymes, we have expressed and screened endoglucanase variants from the Thermoascus aurantiacus and Penicillium decumbens, suggesting that this protocol is applicable to enzymes from a range of organisms.


Assuntos
Celulase/metabolismo , Escherichia coli/enzimologia , Fungos/enzimologia , Ensaios de Triagem em Larga Escala/métodos , Carboximetilcelulose Sódica/metabolismo , Celulase/genética , Vermelho Congo/análise , Escherichia coli/genética , Fungos/genética
5.
Curr Protoc Protein Sci ; Chapter 26: Unit 26.2, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20814931

RESUMO

Recombination of distantly related and nonrelated genes is difficult using traditional PCR-based techniques, and truncation-based methods result in a large proportion of nonviable sequences due to frame shifts, deletions, and insertions. This unit describes a method for creating libraries of chimeras through combinatorial assembly of gene fragments. It allows the experimenter to recombine genes of any identity and to select the sites where recombination takes place. Combinatorial recombination is achieved by generating gene fragments with specific overhangs, or sticky ends. The overhangs permit the fragments to be ligated in the correct order while allowing independent assortment of blocks with identical overhangs. Genes of any identity can be recombined so long as they share 3 to 5 base pairs of identity at the desired recombination sites. Simple adaptations of the method allow incorporation of specific gene fragments.


Assuntos
Técnicas de Química Combinatória/métodos , Evolução Molecular Direcionada/métodos , Biblioteca Gênica , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética
6.
J Bacteriol ; 190(5): 1783-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18156250

RESUMO

The lprG-Rv1410c operon is critical for the survival of Mycobacterium tuberculosis during infection, but very little is known about the functions of its proteins. LprG is a lipoprotein, and Rv1410c encodes the major facilitator superfamily small molecule transporter P55. P55 likely exports small molecules outside of the bacterial cell, but the function of LprG is unclear. A deletion of the homologous operon in Mycobacterium smegmatis is more susceptible to ethidium bromide, and drug resistance is restored by the intact operon from M. tuberculosis. The multidrug resistance pump inhibitor reserpine inhibits resistance to ethidium bromide in both wild-type M. smegmatis and the complemented mutant, suggesting that P55-mediated transport is responsible for drug resistance and that ethidium bromide is a novel substrate for P55. In addition to hypersensitivity to ethidium bromide, cells that lack the lprG-Rv1410c operon display abnormal colony morphology and are defective for sliding motility, properties that suggest an alteration of cell wall composition. Strikingly, both ethidium bromide transport and normal cell surface properties require functional P55 and LprG, as neither alone is sufficient to restore function to the deletion mutant. Thus, P55 requires the cell surface lipoprotein for normal function.


Assuntos
Proteínas de Bactérias/fisiologia , Lipoproteínas/fisiologia , Mycobacterium smegmatis/fisiologia , Mycobacterium/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Farmacorresistência Bacteriana/genética , Etídio/farmacologia , Teste de Complementação Genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese Sítio-Dirigida , Mutação/genética , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Óperon , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...