Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 234: 105010, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227292

RESUMO

Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos/química , Deficiências na Proteostase/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Agregados Proteicos , Conformação Proteica
2.
Sci Rep ; 9(1): 6152, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992471

RESUMO

Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.


Assuntos
Acetilcoenzima A/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Fibrinolíticos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo
3.
Mech Ageing Dev ; 161(Pt B): 211-224, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450768

RESUMO

Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Ciclo Celular/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Caspases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase/genética , Separase/metabolismo
4.
FEMS Yeast Res ; 13(8): 755-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028488

RESUMO

In previous studies, we observed that aspirin, a promising cancer-preventive agent, induces apoptosis in mitochondrial manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae cells grown aerobically in ethanol medium. In this study, we show that aspirin-induced apoptosis is associated with a significant increase in mitochondrial and cytosolic O2 ·- and oxidation of mitochondrial NAD(P)H. A concomitant rise in the level of cytosolic CuZnSOD activity failed to compensate for mitochondrial MnSOD deficiency. However, an observed increase in activity of Escherichia coli FeSOD targeted to the mitochondrial matrix of the MnSOD-deficient yeast cells, markedly decreased aspirin-induced accumulation of mitochondrial O2 ·-, significantly increased the mitochondrial NAD(P)H level and rescued the apoptotic phenotype. Indeed, recombinant yeast cells expressing E. coli FeSOD behaved in a similar manner to the parent wild-type yeast cells with native mitochondrial MnSOD activity. Wild-type cells consistently showed a decrease in mitochondrial O2 ·- and an increase in mitochondrial NAD(P)H levels in the presence of aspirin in ethanol medium. In fact, in wild-type cells, our studies supported an antioxidant action of aspirin. Taken together, our results indicate that a pro-oxidant effect of aspirin occurring predominantly in cells with compromised mitochondrial redox balance may be enough to overcome antioxidant defences resulting in apoptosis, as observed in MnSOD-deficient yeast cells.


Assuntos
Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADP/metabolismo , Superóxidos/metabolismo , Citosol/metabolismo , Ativação Enzimática , Escherichia coli/metabolismo , Oxirredução/efeitos dos fármacos , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/deficiência , Superóxido Dismutase/metabolismo
5.
Oxid Med Cell Longev ; 2013: 504230, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23983899

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Mamíferos , Prostaglandina-Endoperóxido Sintases/metabolismo , Leveduras
6.
Front Oncol ; 2: 64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737670

RESUMO

Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...