Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(32): 29046-29059, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599965

RESUMO

Seed quality (i.e., emergence energy, viability, physical purity, size, weight) is a critical factor that influences the yield of crops. Poor seed quality can lead to reduced germination rates, lower plant populations, and, ultimately, lower crop yields. On the other hand, seed priming is suggested to be an effective technique for improving seeds germination and plant population. In this study, we investigated the effect of seed priming with polyethylene glycol (PEG) on the germination, growth, and yield of two varieties of canola, super canola, and sandal canola. The treatment plan includes five concentrations of PEG (i.e., 5, 10, 15, 20%), distilled water priming, and control (no priming). All of the treatments were applied in 3 replications following a completely randomized design. Our results showed that seed priming with 5%PEG (T2) significantly improved radicle length (50 and 36%), plant height (43 and 34%), chlorophyll a (44 and 43%), chlorophyll b (120 and 208%), and total chlorophyll (83 and 111%) compared to control in super canola and sandal canola, respectively. In particular, seed priming with 5%PEG resulted in the highest increase in protein contents (25 and 1.40%), oleic acid (26 and 40%), and linolenic acid (6 and 6%) compared to control in super canola and sandal canola, respectively. It is concluded that seed priming with 5%PEG is an effective treatment to improve the performance of canola crops in terms of seedling growth, yield, chlorophyll, protein, and oil content. More investigations are recommended as future perspectives using other canola varieties to declare 5% PEG as an effective treatment for canola for improvement in growth, oil, protein, and chlorophyll contents.

3.
Front Genet ; 12: 760760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976009

RESUMO

The Xinjiang Uyghur Autonomous Region of China (XUARC) harbors almost 50 ethnic groups including the Uyghur (UGR: 45.84%), Han (HAN: 40.48%), Kazakh (KZK: 6.50%), Hui (HUI: 4.51%), Kyrgyz (KGZ: 0.86%), Mongol (MGL: 0.81%), Manchu (MCH: 0.11%), and Uzbek (UZK: 0.066%), which make it one of the most colorful regions with abundant cultural and genetic diversities. In our previous study, we established allelic frequency databases for 14 autosomal short tandem repeats (STRs) for four minority populations from XUARC (MCH, KGZ, MGL, and UZK) using the AmpFlSTR® Identifiler PCR Amplification Kit. In this study, we genotyped 2,121 samples using the GoldenEye™ 20A Kit (Beijing PeopleSpot Inc., Beijing, China) amplifying 19 autosomal STR loci for four major ethnic groups (UGR, HAN, KZK, and HUI). These groups make up 97.33% of the total XUARC population. The total number of alleles for all the 19 STRs in these populations ranged from 232 (HAN) to 224 (KZK). We did not observe any departures from the Hardy-Weinberg equilibrium (HWE) in these populations after sequential Bonferroni correction. We did find minimal departure from linkage equilibrium (LE) for a small number of pairwise combinations of loci. The match probabilities for the different populations ranged from 1 in 1.66 × 1023 (HAN) to 6.05 × 1024 (HUI), the combined power of exclusion ranged from 0.999 999 988 (HUI) to 0.999 999 993 (UGR), and the combined power of discrimination ranged from 0.999 999 999 999 999 999 999 983 (HAN) to 0.999 999 999 999 999 999 999 997 (UGR). Genetic distances, principal component analysis (PCA), STRUCTURE analysis, and the phylogenetic tree showed that genetic affinity among studied populations is consistent with linguistic, ethnic, and geographical classifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...