Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066359

RESUMO

Motivation: Computational analysis of large-scale metagenomics sequencing datasets has proved to be both incredibly valuable for extracting isolate-level taxonomic and functional insights from complex microbial communities. However, thanks to an ever-expanding ecosystem of metagenomics-specific algorithms and file formats, designing studies, implementing seamless and scalable end-to-end workflows, and exploring the massive amounts of output data have become studies unto themselves. Furthermore, there is little inter-communication between output data of different analytic purposes, such as short-read classification and metagenome assembled genomes (MAG) reconstruction. One-click pipelines have helped to organize these tools into targeted workflows, but they suffer from general compatibility and maintainability issues. Results: To address the gap in easily extensible yet robustly distributable metagenomics workflows, we have developed a module-based metagenomics analysis system written in Snakemake, a popular workflow management system, along with a standardized module and working directory architecture. Each module can be run independently or conjointly with a series of others to produce the target data format (ex. short-read preprocessing alone, or short-read preprocessing followed by de novo assembly), and outputs aggregated summary statistics reports and semi-guided Jupyter notebook-based visualizations, The module system is a bioinformatics-optimzied scaffold designed to be rapidly iterated upon by the research community at large. Availability: The module template as well as the modules described below can be found at https://github.com/MetaSUB-CAMP.

2.
Sci Rep ; 9(1): 14589, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601906

RESUMO

Vibrio anguillarum 531A, isolated from a diseased fish in the Atlantic Ocean, is a mixture composed of about 95 and 5% of highly pigmented cells (strain 531Ad) and cells with normal levels of pigmentation (strain 531Ac), respectively. Analysis of the V. anguillarum 531Ad DNA region encompassing genes involved in the tyrosine metabolism showed a 410-bp duplication within the hmgA gene that results in a frameshift and early termination of translation of the homogentisate 1,2-dioxygenase. We hypothesized that this mutation results in accumulation of homogentisate that is oxidized and polymerized to produce pyomelanin. Introduction in E. coli of recombinant clones carrying the V. anguillarum hppD (4-hydroxyphenylpyruvate-dioxygenase), and a mutated hmgA produced brown colored colonies. Complementation with a recombinant clone harboring hmgA restored the original color to the colonies confirming that in the absence of homogentisate 1,2-dioxygenase the intermediary in tyrosine catabolism homogentisate accumulates and undergoes nonenzymatic oxidation and polymerization resulting in high amounts of the brown pigment. Whole-genome sequence analysis showed that V. anguillarum 531 Ac and 531Ad differ in the hmgA gene mutation and 23 mutations, most of which locate to intergenic regions and insertion sequences.


Assuntos
Proteínas de Bactérias/genética , DNA/análise , Homogentisato 1,2-Dioxigenase/genética , Pigmentação , Vibrio/enzimologia , Biologia Computacional , DNA Intergênico , Escherichia coli/metabolismo , Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Genoma Bacteriano , Modelos Genéticos , Mutação , Tirosina/química , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...